大学院工学研究院

徐 福国

ジョ フッコク  (Fuguo Xu)

基本情報

所属
千葉大学 大学院工学研究院 特任准教授
学位
学士(工学)(2012年7月 燕山大学)
修士(工学)(2016年7月 燕山大学)
博士(工学)(2019年9月 上智大学)

J-GLOBAL ID
201901018790265914
researchmap会員ID
7000029879

学歴

 3

論文

 31
  • Shengyan Hou, Hai Yin, Fuguo Xu, Pla Benjamín, Jinwu Gao, Hong Chen
    Energy 266 126466-126466 2023年3月  査読有り
  • Fuguo Xu, Qiaobin Fu, Tielong Shen
    Automatica 146 110655-110655 2022年12月  査読有り筆頭著者責任著者
  • Kento Misawa, Fuguo Xu, Kazuma Sekiguchi, Kenichiro Nonaka
    Artificial Life and Robotics 2022年10月7日  査読有り
  • Fuguo Xu, Hiroki Tsunogawa, Junichi Kako, Xiaosong Hu, Shengbo Eben Li, Tielong Shen, Lars Eriksson, Carlos Guardiola
    Control Theory and Technology 20(2) 145-160 2022年5月  査読有り筆頭著者責任著者
    In this paper, we propose a benchmark problem for the challengers aiming to energy efficiency control of hybrid electric vehicles (HEVs) on a road with slope. Moreover, it is assumed that the targeted HEVs are in the connected environment with the obtainment of real-time information of vehicle-to-everything (V2X), including geographic information, vehicle-to-infrastructure (V2I) information and vehicle-to-vehicle (V2V) information. The provided simulator consists of an industrial-level HEV model and a traffic scenario database obtained through a commercial traffic simulator, where the running route is generated based on real-world data with slope and intersection position. The benchmark problem to be solved is the HEVs powertrain control using traffic information to fulfill fuel economy improvement while satisfying the constraints of driving safety and travel time. To show the HEV powertrain characteristics, a case study is given with the speed planning and energy management strategy.
  • Bo Zhang, Jiangyan Zhang, Fuguo Xu
    Control Theory and Technology 20(2) 173-184 2022年5月  査読有り
    This paper proposes an energy management strategy for the benchmark problem of E-COSM 2021 to improve the energy efficiency of hybrid electric vehicles (HEVs) on a road with a slope. We assume that HEVs are in a connected environment with real-time vehicle-to-everything information, including geographic information, vehicle-to-infrastructure information and vehicle-to-vehicle information. The benchmark problem to be solved is based on HEV powertrain control using traffic information to achieve fuel economy improvements while satisfying the constraints of driving safety and travel time. The proposed strategy includes multiple rules and model predictive control (MPC). The rules of this strategy are designed based on external environment information to maintain safe driving and to determine the driving mode. To improve fuel economy, the optimal energy management strategy is primarily considered, and to perform real-time energy management via RHC-based optimization in a connected environment with safety constraints, a key issue is to predict the dynamics of the preceding vehicle during the targeted horizon. Therefore, this paper presents a real-time model-based optimization strategy with learning-based prediction of the vehicle’s future speed. To validate the proposed optimization strategy, a powertrain control simulation platform in a traffic-in-the-loop environment is constructed, and case study results performed on the constructed platform are reported and discussed.

所属学協会

 2

共同研究・競争的資金等の研究課題

 1

学術貢献活動

 2
  • 企画立案・運営等
    Control Theory and Technology 2021年 - 2022年
  • 学術調査立案・実施
    IFAC 2021年8月22日 - 2021年8月25日