大学院医学研究院

関 直彦

セキ ナオヒコ  (Naohiko Seki)

基本情報

所属
千葉大学 大学院医学研究院 准教授 (医学博士)
学位
医学博士(千葉大学)

通称等の別名
千葉大学大学院医学研究院 機能ゲノム学
研究者番号
50345013
J-GLOBAL ID
200901004712087610
researchmap会員ID
5000098983

1991年 千葉大学大学院医学研究科博士課程修了 (医学博士)
1991年 科学技術庁放射線医学総合研究所 客員研究官
1992年 かずさDNA研究所 遺伝子構造第1研究室 研究員
1999年 ヘリックス研究所 第3研究部門 主任研究員
2002年 千葉大学大学院医学研究院 研究准教授
2015年 千葉大学大学院医学研究院 准教授

論文

 375
  • Atsushi Kasamatsu, Ryunosuke Nozaki, Kohei Kawasaki, Tomoaki Saito, Chikashi Minemura, Naohiko Seki, Joel Moss, Katsuhiro Uzawa
    Cancers 16(6) 1242-1242 2024年3月21日  
    microRNAs (miRs) function in cancer progression as post-transcriptional regulators. We previously reported that endogenous circular RNAs (circRNAs) function as efficient miR sponges and could act as novel gene regulators in oral squamous cell carcinoma (OSCC). In this study, we carried out cellular and luciferase reporter assays to examine competitive inhibition of miR-1269a, which is upregulated expression in several cancers, by circRNA-1269a, a synthetic circRNA that contains miR-1269a binding sequences. We also used data-independent acquisition (DIA) proteomics and in silico analyses to determine how circRNA-1269a treatment affects molecules downstream of miR-1269a. First, we confirmed the circularization of the linear miR-1269a binding site sequence using RT-PCR with divergent/convergent primers and direct sequencing of the head-to-tail circRNA junction point. In luciferase reporter and cellular functional assays, circRNA-1269a significantly reduced miR-1269a function, leading to a significant decrease in cell proliferation and migration. DIA proteomics and gene set enrichment analysis of OSCC cells treated with circRNA-1269a indicated high differential expression for 284 proteins that were mainly enriched in apoptosis pathways. In particular, phospholipase C gamma 2 (PLCG2), which is related to OSCC clinical stage and overall survival, was affected by the circRNA-1269a/miR-1269a axis. Taken together, synthetic circRNA-1269a inhibits tumor progression via miR-1269a and its downstream targets, indicating that artificial circRNAs could represent an effective OSCC therapeutic.
  • Sasagu Kurozumi, Naohiko Seki, Eriko Narusawa, Chikako Honda, Shoko Tokuda, Yuko Nakazawa, Takehiko Yokobori, Ayaka Katayama, Nigel P Mongan, Emad A Rakha, Tetsunari Oyama, Takaaki Fujii, Ken Shirabe, Jun Horiguchi
    International journal of molecular sciences 25(1) 2023年12月19日  査読有り
    This study aimed to identify microRNAs associated with histological grade using comprehensive microRNA analysis data obtained by next-generation sequencing from early-stage invasive breast cancer. RNA-seq data from normal breast and breast cancer samples were compared to identify candidate microRNAs with differential expression using bioinformatics. A total of 108 microRNAs were significantly differentially expressed in normal breast and breast cancer tissues. Using clinicopathological information and microRNA sequencing data of 430 patients with breast cancer from The Cancer Genome Atlas (TCGA), the differences in candidate microRNAs between low- and high-grade tumors were identified. Comparing the expression of the 108 microRNAs between low- and high-grade cases, 25 and 18 microRNAs were significantly upregulated and downregulated, respectively, in high-grade cases. Clustering analysis of the TCGA cohort using these 43 microRNAs identified two groups strongly predictive of histological grade. miR-3677 is a microRNA upregulated in high-grade breast cancer. The outcome analysis revealed that patients with high miR-3677 expression had significantly worse prognosis than those with low miR-3677 expression. This study shows that microRNAs are associated with histological grade in early-stage invasive breast cancer. These findings contribute to the elucidation of a new mechanism of breast cancer growth regulated by specific microRNAs.
  • Yoko Hagihara, Yuya Tomioka, Takayuki Suetsugu, Masahiro Shinmura, Shunsuke Misono, Yusuke Goto, Naoko Kikkawa, Mayuko Kato, Hiromasa Inoue, Keiko Mizuno, Naohiko Seki
    Cancers 15(23) 2023年11月24日  査読有り責任著者
    Analyses of our microRNA (miRNA) expression signature combined with The Cancer Genome Atlas (TCGA) data revealed that both strands of pre-miR-139 (miR-139-5p, the guide strand, and miR-139-3p, the passenger strand) are significantly downregulated in lung adenocarcinoma (LUAD) clinical specimens. Functional analyses of LUAD cells ectopically expressing miR-139-3p showed significant suppression of their aggressiveness (e.g., cancer cell proliferation, migration, and invasion). The involvement of the passenger strand, miR-139-3p, in LUAD pathogenesis, is an interesting finding contributing to the elucidation of unknown molecular networks in LUAD. Of 1108 genes identified as miR-139-3p targets in LUAD cells, 21 were significantly upregulated in LUAD tissues according to TCGA analysis, and their high expression negatively affected the prognosis of LUAD patients. We focused on thyroid hormone receptor interactor 13 (TRIP13) and investigated its cancer-promoting functions in LUAD cells. Luciferase assays showed that miR-139-3p directly regulated TRIP13. siRNA-mediated TRIP13 knockdown and TRIP13 inhibition by a specific inhibitor (DCZ0415) attenuated the malignant transformation of LUAD cells. Interestingly, when used in combination with anticancer drugs (cisplatin and carboplatin), DCZ0415 exerted synergistic effects on cell proliferation suppression. Identifying the molecular pathways regulated by tumor-suppressive miRNAs (including passenger strands) may aid in the discovery of diagnostic markers and therapeutic targets for LUAD.
  • Reiko Mitsueda, Hiroko Toda, Yoshiaki Shinden, Kosuke Fukuda, Ryutaro Yasudome, Mayuko Kato, Naoko Kikkawa, Takao Ohtsuka, Akihiro Nakajo, Naohiko Seki
    Cancers 15(16) 2023年8月21日  査読有り最終著者責任著者
    Accumulating evidence suggests that the miR-30 family act as critical players (tumor-suppressor or oncogenic) in a wide range of human cancers. Analysis of microRNA (miRNA) expression signatures and The Cancer Genome Atlas (TCGA) database revealed that that two passenger strand miRNAs, miR-30c-1-3p and miR-30c-2-3p, were downregulated in cancer tissues, and their low expression was closely associated with worse prognosis in patients with BrCa. Functional assays showed that miR-30c-1-3p and miR-30c-2-3p overexpression significantly inhibited cancer cell aggressiveness, suggesting these two miRNAs acted as tumor-suppressors in BrCa cells. Notably, involvement of passenger strands of miRNAs is a new concept of cancer research. Further analyses showed that seven genes (TRIP13, CCNB1, RAD51, PSPH, CENPN, KPNA2, and MXRA5) were putative targets of miR-30c-1-3p and miR-30c-2-3p in BrCa cells. Expression of seven genes were upregulated in BrCa tissues and predicted a worse prognosis of the patients. Among these genes, we focused on TRIP13 and investigated the functional significance of this gene in BrCa cells. Luciferase reporter assays showed that TRIP13 was directly regulated by these two miRNAs. TRIP13 knockdown using siRNA attenuated BrCa cell aggressiveness. Inactivation of TRIP13 using a specific inhibitor prevented the malignant transformation of BrCa cells. Exploring the molecular networks controlled by miRNAs, including passenger strands, will facilitate the identification of diagnostic markers and therapeutic target molecules in BrCa.

MISC

 339

所属学協会

 2

共同研究・競争的資金等の研究課題

 87