研究者業績

田尻 怜子

Reiko Tajiri

基本情報

所属
千葉大学 大学院理学研究院
学位
博士(理学)(2007年3月 東京大学)

J-GLOBAL ID
201801013354418943
researchmap会員ID
B000288227

外部リンク

論文

 12
  • Shotaro Hiraiwa, Shumpei Takeshita, Tensho Terano, Ryuhei Hayashi, Koyo Suzuki, Reiko Tajiri, Tetsuya Kojima
    Development genes and evolution 2024年7月8日  
    Organisms display a remarkable diversity in their shapes. Although substantial progress has been made in unraveling the mechanisms that govern cell fate determination during development, the mechanisms by which fate-determined cells give rise to the final shapes of organisms remain largely unknown. This study describes in detail the process of the final shape formation of the tarsus, which is near the distal tip of the adult leg, during the pupal stage in Drosophila melanogaster. Days-long live imaging revealed unexpectedly complicated cellular dynamics. The epithelial cells transiently form the intriguing structure, which we named the Parthenon-like structure. The basal surface of the epithelial cells and localization of the basement membrane protein initially show a mesh-like structure and rapidly shrink into the membranous structure during the formation and disappearance of the Parthenon-like structure. Furthermore, macrophage-like cells are observed moving around actively in the Parthenon-like structure and engulfing epithelial cells. The findings in this research are expected to significantly contribute to our understanding of the mechanisms involved in shaping the final structure of the adult tarsus.
  • Reiko Tajiri, Ayaka Hirano, Yu-ya Kaibara, Daiki Tezuka, Zhengyang Chen, Tetsuya Kojima
    iScience 26(8) 107279-107279 2023年8月  査読有り筆頭著者
  • Reiko Tajiri, Haruhiko Fujiwara, Tetsuya Kojima
    Communications biology 4(1) 88-88 2021年1月19日  査読有り筆頭著者責任著者
    Body elongation is a general feature of development. Postembryonically, the body needs to be framed and protected by extracellular materials, such as the skeleton, the skin and the shell, which have greater strength than cells. Thus, body elongation after embryogenesis must be reconciled with those rigid extracellular materials. Here we show that the exoskeleton (cuticle) coating the Drosophila larval body has a mechanical property to expand less efficiently along the body circumference than along the anteroposterior axis. This "corset" property of the cuticle directs a change in body shape during body growth from a relatively round shape to an elongated one. Furthermore, the corset property depends on the functions of Cuticular protein 11 A and Tubby, protein components of a sub-surface layer of the larval cuticle. Thus, constructing a stretchable cuticle and supplying it with components that confer circumferential stiffness is the fly's strategy for executing postembryonic body elongation.
  • Reiko Tajiri
    CURRENT OPINION IN INSECT SCIENCE 19 30-35 2017年2月  査読有り筆頭著者最終著者責任著者
    The wide variety of external morphologies has Underlain the evolutionary success of insects. The insect exoskeleton, or cuticle, which covers the entire body and constitutes the external morphology, is extracellular matrix produced by the epidermis. How is cuticle shaped during development? Past studies have mainly focused on patterning, differentiation and morphogenesis of the epidermis. Recently, however, it is becoming clear that cuticle itself plays important and active roles in regulation of cuticle shape. Studies in the past several years show that pre-existing cuticle can influence shaping of new cuticle, and cuticle can sculpt its own shape through its material property. In this review, I summarize recent advances and discuss future prospects.
  • Reiko Tajiri, Nobuhiro Ogawa, Haruhiko Fujiwara, Tetsuya Kojima
    PLoS Genetics 13(1) e1006548 2017年1月1日  査読有り筆頭著者責任著者
    Body shapes are much more variable than body plans. One way to alter body shapes independently of body plans would be to mechanically deform bodies. To what extent body shapes are regulated physically, or molecules involved in physical control of morphogenesis, remain elusive. During fly metamorphosis, the cuticle (exoskeleton) covering the larval body contracts longitudinally and expands laterally to become the ellipsoidal pupal case (puparium). Here we show that Drosophila melanogaster Obstructor-E (Obst-E) is a protein constituent of the larval cuticle that confers the oriented contractility/expandability. In the absence of obst-E function, the larval cuticle fails to undergo metamorphic shape change and finally becomes a twiggy puparium. We present results indicating that Obst-E regulates the arrangement of chitin, a long-chain polysaccharide and a central component of the insect cuticle, and directs the formation of supracellular ridges on the larval cuticle. We further show that Obst-E is locally required for the oriented shape change of the cuticle during metamorphosis, which is associated with changes in the morphology of those ridges. Thus, Obst-E dramatically affects the body shape in a direct, physical manner by controlling the mechanical property of the exoskeleton.
  • Kohei Natori, Reiko Tajiri, Shiori Furukawa, Tetsuya Kojima
    DEVELOPMENTAL BIOLOGY 361(2) 450-462 2012年1月  査読有り
    The morphology of insect appendages, such as the number and proportion of leg tarsal segments, is immensely diverse. In Drosophila melanogaster, adult legs have five tarsal segments. Accumulating evidence indicates that tarsal segments are formed progressively through dynamic changes in the expression of transcription factor genes, such as Bar genes, during development. In this study, to examine further the basis of progressive tarsal patterning, the precise expression pattern and function of several transcription factor genes were investigated in relation to the temporal regulation of Bar expression. The results indicate that nubbin is expressed over a broad region at early stages but gradually disappears from the middle of the tarsal region. This causes the progressive expansion of rotund expression, which in turn progressively represses Bar expression, leading to the formation of the tarsal segment 3. The region corresponding to the tarsal segment 4 is formed when apterous expression is initiated, which renders Bar expression refractory to rotund. In addition, the tarsal segment 2 appears to be derived from the region that expresses Bar at a very early stage. Cessation of Bar expression in this region requires the function of spineless, which also regulates rotund expression. These findings indicate that the temporally dynamic regulatory interaction of these transcription factor genes is the fundamental basis of the progressive patterning of the tarsal region. (C) 2011 Elsevier Inc. All rights reserved.
  • Reiko Tajiri, Kazuyo Misaki, Shigenobu Yonemura, Shigeo Hayashi
    DEVELOPMENT 138(21) 4621-4626 2011年11月  査読有り筆頭著者責任著者
    Joints permit efficient locomotion, especially among animals with a rigid skeleton. Joint morphologies vary in the body of individual animals, and the shapes of homologous joints often differ across species. The diverse locomotive behaviors of animals are based, in part, on the developmental and evolutionary history of joint morphogenesis. We showed previously that strictly coordinated cell-differentiation and cell-movement events within the epidermis sculpt the interlocking ball-and-socket joints in the adult Drosophila tarsus (distal leg). Here, we show that the tarsal joints of various insect species can be classified into three types: ball-and-socket, side-by-side and uniform. The last two probably result from joint formation without the cell-differentiation step, the cell-movement step, or both. Similar morphological variations were observed in Drosophila legs when Notch function was temporarily blocked during joint formation, implying that the independent acquisition of cell differentiation and cell movement underlay the elaboration of tarsal joint morphologies during insect evolution. These results provide a framework for understanding how the seemingly complex morphology of the interlocking joint could have developed during evolution by the addition of simple developmental modules: cell differentiation and cell movement.
  • Reiko Tajiri, Kazuyo Misaki, Shigenobu Yonemura, Shigeo Hayashi
    DEVELOPMENT 137(12) 2055-2063 2010年6月  査読有り筆頭著者
    Animal body shape is framed by the skeleton, which is composed of extracellular matrix (ECM). Although how the body plan manifests in skeletal morphology has been studied intensively, cellular mechanisms that directly control skeletal ECM morphology remain elusive. In particular, how dynamic behaviors of ECM-secreting cells, such as shape changes and movements, contribute to ECM morphogenesis is unclear. Strict control of ECM morphology is crucial in the joints, where opposing sides of the skeleton must have precisely reciprocal shapes to fit each other. Here we found that, in the development of ball-and-socket joints in the Drosophila leg, the two sides of ECM form sequentially. We show that distinct cell populations produce the 'ball' and the 'socket', and that these cells undergo extensive shape changes while depositing ECM. We propose that shape changes of ECM-producing cells enable the sequential ECM formation to allow the morphological coupling of adjacent components. Our results highlight the importance of dynamic cell behaviors in precise shaping of skeletal ECM architecture.
  • Reiko Tajiri, Takuya Tsuji, Ryu Ueda, Kaoru Saigo, Tetsuya Kojima
    DEVELOPMENTAL BIOLOGY 303(2) 461-473 2007年3月  査読有り筆頭著者
    During tissue patterning, developing fields may be subdivided into several non-overlapping domains by region-specific expression of transcription factors. In Drosophila leg development, the most distal segments, the pretarsus and tarsal segment 5 (ta5), are precisely specified by interactions between tarsus bomeobox genes (BarH1 and BarH2) and pretarsus homeobox genes (aristaless, clawless, and Lim1). Here, we demonstrate that trachealess and tango, both encoding bHLH-PAS proteins that are required for the formation of the embryonic tracheal system, are essential for forming two adjacent distal segments of the leg. trachealess is expressed in the pretarsus and ta5, and the concerted action of trachealess and tango seems to modulate the activity of bomeobox gene regulatory loops by repressing Bar in the pretarsus and activating Bar in ta5. (c) 2006 Elsevier Inc. All rights reserved.
  • Takashi Okumura, Reiko Tajiri, Tetsuya Kojima, Kaoru Saigo, Ryutaro Murakami
    GENE EXPRESSION PATTERNS 7(1-2) 178-186 2007年1月  査読有り
    Two sequentially-expressed GATA factor genes, serpent (srp) and GATAe, are essential for development of the Drosophila endoderm. The earliest endodermal GATA gene, srp, has been thought to specify the endodermal fate, activating the second GATA gene GATAe, and the latter continues to be expressed in the endodermal midgut throughout life. Previously, we proposed that GATAe establishes and maintains the state of terminal differentiation of the midgut, since some functional genes in the midgut require GATAe activity for their expression. To obtain further evidence of the role of GA TA e, we searched for additional genes that are expressed specifically in the midgut in late stages, and examined responses of a total of selected 15 genes to the depletion and overexpression of GATAe. Ten of the 15 genes failed to be expressed in the embryo deficient for GATAe activity, but, the other five genes did not require GATAe. Instead, srp is required for activating the five genes. These observations indicate that GATAe activates a major subset of genes in the midgut, and some other pathway(s) downstream of srp activates other genes. (c) 2006 Elsevier B.V. All rights reserved.
  • S Kozu, R Tajiri, T Tsuji, T Michiue, K Saigo, T Kojima
    DEVELOPMENTAL BIOLOGY 294(2) 497-508 2006年6月  査読有り
    The spatial and temporal regulation of genes encoding transcription factors is essential for the proper development of multicellular organisms. In Drosophila leg development, the distal-most tarsus (ta5) is specified by the strong expression of a pair of Bar homeobox genes in late third instar. This expression is regulated under the control of the ta5 enhancer activated by Bar. No activation of the ta5 enhancer, however, occurs in early third instar when considerable Bar is produced. The ta5 enhancer was comprised of a basal enhancer required for driving Bar expression and a negative regulatory motif serving as a binding site for the heterodimer of Spineless and Tango, homologs of the mammalian dioxin receptor and aryl hydrocarbon nuclear translocator, respectively. The spineless and tango were essential for suppressing the basal enhancer activation in early third instar. The spineless was transiently expressed in early third instar in the Bar expression domain. ta5 Bar expression may thus be temporally regulated through transient inhibition of premature activation of the basal enhancer via specific binding of the Spineless/Tango heterodimer to the negative regulatory motif in early third instar and subsequent release from the inhibition due to the disappearance of spineless expression at later stages. (c) 2006 Elsevier Inc. All rights reserved.

MISC

 10

講演・口頭発表等

 16

共同研究・競争的資金等の研究課題

 16