Daolai Sun, Yasuhiro Yamada, Satoshi Sato, Wataru Ueda
APPLIED CATALYSIS B-ENVIRONMENTAL 193 75-92 2016年9月 査読有り責任著者
Applications of renewable biomass provide facile routes to alleviate the shortage of fossil fuels as well as to reduce the emission of CO2. Glycerol, which is currently produced as a waste in the biodiesel production, is one of the most attractive biomass resources. In the past decade, the conversion of glycerol into useful chemicals has attracted much attention, and glycerol is mainly converted by steam reforming, hydrogenolysis, oxidation, dehydration, esterification, carboxylation, acetalization, and chlorination. In this review, we focused on the catalytic hydrogenolysis of glycerol into C3 chemicals, which contain many industrially important products such as 1,2-propanediol, 1,3-propanediol, allyl alcohol, 1-propanol and propylene. In the hydrogenolysis of glycerol into propanediols, advantages and disadvantages of liquid and vapor-phase reactions are compared. In addition, recent studies on catalysts, reaction conditions, and proposed pathways are primarily summarized and discussed. Furthermore, new research trends are introduced in connection with the hydrogenolysis of glycerol into allyl alcohol, propanols and propylene. (C) 2016 Elsevier B.V. All rights reserved.