研究者業績

金田 篤志

カネダ アツシ  (Atsushi Kaneda)

基本情報

所属
千葉大学 大学院医学研究院分子腫瘍学 教授
学位
博士(医学)(2004年3月 東京大学)
医学士(1994年3月 東京大学)

J-GLOBAL ID
200901012808966030
researchmap会員ID
6000019618

外部リンク

平成6年東京大学医学部医学科卒業。平成6年東京大学第3外科学教室(現消化管外科学)医員、平成11年助手。平成12年より東京大学大学院医学系研究科博士課程進学、主に国立がんセンター研究所発がん研究部(牛島俊和研究室)において、網羅的抽出手法を改変し胃癌メチローム解析、サイレンシング遺伝子の大量同定に成功。平成16年よりジョンズ・ホプキンス大学(Andrew P. Feinberg研究室)ポスドク、正常細胞に蓄積するエピゲノム異常による癌リスク上昇を証明。平成18年より東京大学先端科学技術研究センターゲノムサイエンス分野(油谷浩幸研究室)特任准教授。エピゲノム網羅的解析による癌層別化研究を遂行し、平成21年よりJSTさきがけ(エピジェネティクス)研究員兼任。平成25年より千葉大学大学院医学研究院分子腫瘍学(旧生化学第二講座)教授。JST CREST(エピゲノム)、AMED革新がん、AMED次世代がん、などのプロジェクトを遂行し、環境が誘導するエピゲノム変化・破綻と疾患発症を研究。令和5年より千葉大学健康疾患オミクスセンター長兼任。


研究キーワード

 2

学歴

 2

論文

 199
  • Masahiro Takikawa, Airi Nakano, Jayaraman Krishnaraj, Yuko Tabata, Yuzo Watanabe, Atsushi Okabe, Yukiko Sakaguchi, Ryoji Fujiki, Ami Mochizuki, Tomoko Tajima, Akane Sada, Shu Matsushita, Yuichi Wakabayashi, Kimi Araki, Atsushi Kaneda, Fuyuki Ishikawa, Mahito Sadaie, Rieko Ohki
    Proceedings of the National Academy of Sciences of the United States of America 122(6) e2413126122 2025年2月11日  査読有り
    Tumor progression is suppressed by inherent cellular mechanisms such as apoptosis. The p53 tumor suppressor gene is the most commonly mutated gene in human cancer and plays a pivotal role in tumor suppression. RPRM is a target gene of p53 known to be involved in tumor suppression, but its molecular function has remained elusive. Here, we report that Reprimo (the protein product of RPRM) is secreted and extrinsically induces apoptosis in recipient cells. We identified FAT1, FAT4, CELSR1, CELSR2, and CELSR3, members of the protocadherin family, as receptors for Reprimo. Subsequent analyses revealed that Reprimo acts upstream of the Hippo-YAP/TAZ-p73 axis and induces apoptosis by transactivating various proapoptotic genes. In vivo analyses further support the tumor-suppressive effects of secreted Reprimo. These findings identify the p53-Reprimo-Hippo-YAP/TAZ-p73 axis as an extrinsic apoptosis pathway that plays a crucial role in tumor suppression. Our finding of the innate tumor eliminator Reprimo and the downstream pathway offers a promising avenue for the pharmacological treatment of cancer.
  • Yuki Yamanashi, Shinpei Takamaru, Atsushi Okabe, Satoshi Kaito, Yuto Azumaya, Yugo R. Kamimura, Kenzo Yamatsugu, Tomoya Kujirai, Hitoshi Kurumizaka, Atsushi Iwama, Atsushi Kaneda, Shigehiro A. Kawashima, Motomu Kanai
    Nature Communications 16(1) 2025年1月24日  査読有り
  • Koide S., Oshima M., Kamiya T., Zheng Z., Liu Z., Rizq O., Nishiyama A., Murakami K., Yamada Y., Nakajima-Takagi Y., Rahmutulla B., Kaneda A., Yokoyama K., Yusa N., Imoto S., Miura F., Ito T., Tamura T., Nerlov C., Yamashita M., Iwama A.
    Blood in press 2025年  査読有り
  • Kentaro Kosaka, Naoya Takayama, Sudip Kumar Paul, Maria Alejandra Kanashiro, Motohiko Oshima, Masaki Fukuyo, Bahityar Rahmutulla, Ikuko Tajiri, Michiaki Mukai, Yoshitaka Kubota, Shinsuke Akita, Nobutaka Furuyama, Atsushi Kaneda, Atsushi Iwama, Koji Eto, Nobuyuki Mitsukawa
    Stem Cell Research & Therapy 15(1) 2024年10月14日  査読有り
  • Koh Iwasaki, Akari Tojo, Haruka Kobayashi, Kai Shimizu, Yoshitaka Kamimura, Yasunori Horikoshi, Atsuhiko Fukuto, Jiying Sun, Manabu Yasui, Masamitsu Honma, Atsushi Okabe, Ryoji Fujiki, Nakako Izumi Nakajima, Atsushi Kaneda, Satoshi Tashiro, Akira Sassa, Kiyoe Ura
    Genes to Cells 29(11) 951-965 2024年9月8日  査読有り
    Abstract Histone modifications are catalyzed and recognized by specific proteins to regulate dynamic DNA metabolism processes. NSD2 is a histone H3 lysine 36 (H3K36)‐specific methyltransferase that is associated with both various transcription regulators and DNA repair factors. Specifically, it has been implicated in the repair of DNA double‐strand breaks (DSBs); however, the role of NSD2 during DSB repair remains enigmatic. Here, we show that NSD2 does not accumulate at DSB sites and that it is not further mobilized by DSB formation. Using three different DSB repair reporter systems, which contained the endonuclease site in the active thymidine kinase gene (TK) locus, we demonstrated separate dose‐dependent effects of NSD2 on homologous recombination (HR), canonical‐non‐homologous end joining (c‐NHEJ), and non‐canonical‐NHEJ (non‐c‐NHEJ). Endogenous NSD2 has a role in repressing non‐c‐NHEJ, without affecting DSB repair efficiency by HR or total NHEJ. Furthermore, overexpression of NSD2 promotes c‐NHEJ repair and suppresses HR repair. Therefore, we propose that NSD2 has functions in chromatin integrity at the active regions during DSB repair.

MISC

 109

担当経験のある科目(授業)

 3

共同研究・競争的資金等の研究課題

 31