国際高等研究基幹

小野寺 淳

Atsushi Onodera

基本情報

所属
千葉大学 国際高等研究基幹 大学院医学研究院 災害治療学研究所 災害情報解析研究部門 教授
学位
博士(医学)(2010年3月 千葉大学)

研究者番号
10586598
J-GLOBAL ID
201801014532338351
researchmap会員ID
B000304669

外部リンク

ヒストン修飾酵素であるポリコーム群(PcG)およびトライソラックス群(TrxG)複合体、DNAシトシンメチル基酸化酵素TETの機能解析を中心としたT細胞のepigenetic研究に行っています。免疫学は、基礎的な分子生物学と臨床医学を繋ぐ接点となる非常に大切かつ魅力的な研究分野であることから、この領域の研究者になりました。

工学部で学んだ化学とプログラミングの知識と、医学部で学んだ基礎医学と臨床医学の知識をもとに、物質科学の観点から生命現象を解き明かすべく研究に取り組んでいます。言い換えると、複雑な生命現象をよりシンプルな物質科学の法則で説明することを目標としています。医学部卒業後にすぐに大学院に進学したため臨床経験はありませんが、基礎研究を通じて医学の発展に貢献したいと志して研究活動を続けております。

米国国立衛生研究所(NIH)との国際共同研究によりbioinformaticsに関するプログラミングを学ぶなど、次世代シークエンサーによる解析に初期から取り組み、既存の解析ソフトのみならず自作の解析ツールを開発して研究に用いています。

2016年に千葉大学国際粘膜免疫・アレルギー治療学研究センターが米国サンディエゴのUCSD内に設置されたことを機に、UCSDおよび近隣の研究所(La Jolla Institute for Immunology: LJI)との国際共同研究を開始しました。化学反応を利用したメチル化DNAの新規検出方法を応用して、生命科学の未解決問題に挑み、未知の生命現象の発見に繋げたいと考えております。

2023年7月より、災害治療学研究所に着任しました。(1)今までに取り組んできた免疫のepigenetic研究とbioinformaticsツール開発をさらに発展させること、(2)災害発生後の慢性期に視点をおいた生活習慣病、感染症の対策に繋がる基礎研究をすること、(3)災害対策の観点から様々な研究者と異分野融合の研究を行い、新たなフィールドを開拓すること、を目標に活動しております。


学歴

 3

論文

 48
  • Edahi Gonzalez-Avalos, Atsushi Onodera, Daniela Samaniego-Castruita, Anjana Rao, Ferhat Ay
    Genome biology 25(1) 142-142 2024年6月3日  査読有り
    BACKGROUND: Like its parent base 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC) is a direct epigenetic modification of cytosines in the context of CpG dinucleotides. 5hmC is the most abundant oxidized form of 5mC, generated through the action of TET dioxygenases at gene bodies of actively-transcribed genes and at active or lineage-specific enhancers. Although such enrichments are reported for 5hmC, to date, predictive models of gene expression state or putative regulatory regions for genes using 5hmC have not been developed. RESULTS: Here, by using only 5hmC enrichment in genic regions and their vicinity, we develop neural network models that predict gene expression state across 49 cell types. We show that our deep neural network models distinguish high vs low expression state utilizing only 5hmC levels and these predictive models generalize to unseen cell types. Further, in order to leverage 5hmC signal in distal enhancers for expression prediction, we employ an Activity-by-Contact model and also develop a graph convolutional neural network model with both utilizing Hi-C data and 5hmC enrichment to prioritize enhancer-promoter links. These approaches identify known and novel putative enhancers for key genes in multiple immune cell subsets. CONCLUSIONS: Our work highlights the importance of 5hmC in gene regulation through proximal and distal mechanisms and provides a framework to link it to genome function. With the recent advances in 6-letter DNA sequencing by short and long-read techniques, profiling of 5mC and 5hmC may be done routinely in the near future, hence, providing a broad range of applications for the methods developed here.
  • Ami Aoki, Chiaki Iwamura, Masahiro Kiuchi, Kaori Tsuji, Atsushi Sasaki, Takahisa Hishiya, Rui Hirasawa, Kota Kokubo, Sachiko Kuriyama, Atsushi Onodera, Tadanaga Shimada, Tetsutaro Nagaoka, Satoru Ishikawa, Akira Kojima, Haruki Mito, Ryota Hase, Yasunori Kasahara, Naohide Kuriyama, Sukeyuki Nakamura, Takashi Urushibara, Satoru Kaneda, Seiichiro Sakao, Osamu Nishida, Kazuhisa Takahashi, Motoko Y. Kimura, Shinichiro Motohashi, Hidetoshi Igari, Yuzuru Ikehara, Hiroshi Nakajima, Takuji Suzuki, Hideki Hanaoka, Taka-aki Nakada, Toshiaki Kikuchi, Toshinori Nakayama, Koutaro Yokote, Kiyoshi Hirahara
    Journal of Clinical Immunology 44(4) 2024年4月22日  査読有り
    Abstract Purpose Auto-antibodies (auto-abs) to type I interferons (IFNs) have been identified in patients with life-threatening coronavirus disease 2019 (COVID-19), suggesting that the presence of auto-abs may be a risk factor for disease severity. We therefore investigated the mechanism underlying COVID-19 exacerbation induced by auto-abs to type I IFNs. Methods We evaluated plasma from 123 patients with COVID-19 to measure auto-abs to type I IFNs. We performed single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells from the patients with auto-abs and conducted epitope mapping of the auto-abs. Results Three of 19 severe and 4 of 42 critical COVID-19 patients had neutralizing auto-abs to type I IFNs. Patients with auto-abs to type I IFNs showed no characteristic clinical features. scRNA-seq from 38 patients with COVID-19 revealed that IFN signaling in conventional dendritic cells and canonical monocytes was attenuated, and SARS-CoV-2-specific BCR repertoires were decreased in patients with auto-abs. Furthermore, auto-abs to IFN-α2 from COVID-19 patients with auto-abs recognized characteristic epitopes of IFN-α2, which binds to the receptor. Conclusion Auto-abs to type I IFN found in COVID-19 patients inhibited IFN signaling in dendritic cells and monocytes by blocking the binding of type I IFN to its receptor. The failure to properly induce production of an antibody to SARS-CoV-2 may be a causative factor of COVID-19 severity.
  • Mariko Takami, Takahiro Aoki, Katsuhiro Nishimura, Hidekazu Tanaka, Atsushi Onodera, Shinichiro Motohashi
    Cancer research communications 4(2) 446-459 2024年2月19日  査読有り
    UNLABELLED: Invariant natural killer T (iNKT) cells play an essential role in antitumor immunity by exerting cytotoxicity and producing massive amounts of cytokines. iNKT cells express invariant T-cell receptors (TCR) to recognize their cognate glycolipid antigens such as α-galactosylceramide (α-GalCer) presented on CD1d. We recently reported that iNKT cells recognize CD1d-negative leukemia cell line K562 in a TCR-dependent manner. However, it remains controversial how iNKT cells use TCRs to recognize and exhibit cytotoxic activity toward CD1d-negative tumors cells without CD1d restriction. Here, we report that iNKT cells exerted cytotoxicity toward K562 cells via a carried over anti-Vα24 TCR mAb from positive selection by magnetic bead sorting. We found that addition of the anti-Vα24Jα18 TCR mAb (6B11 mAb) rendered iNKT cells cytotoxic to K562 cells in an FcγRII (CD32)-dependent manner. Moreover, iNKT cells treated with 6B11 mAb became cytotoxic to other CD32+ cell lines (U937 and Daudi). In addition, iNKT cells treated with 6B11 mAb suppressed K562 cell growth in a murine xenograft model in vivo. These data suggest that anti-iNKT TCR mAb treatment of iNKT cells can be applied as a therapeutic strategy to treat CD32+ cancers such as leukemia, lymphoma, and lung cancer. SIGNIFICANCE: Our findings unveiled that iNKT cells recognize and kill CD1d-negative target tumors via the anti-iNKT TCR mAb bound to CD32 at the tumor site, thereby bridging iNKT cells and CD1d-negative tumors. These findings shed light on the therapeutic potential of anti-iNKT TCR mAbs in NKT cell-based immunotherapy to treat CD1d-negative CD32+ cancers.
  • Atsushi Onodera, Kota Kokubo, Mikiko Okano, Miki Onoue, Masahiro Kiuchi, Chiaki Iwamura, Tomohisa Iinuma, Motoko Y. Kimura, Nobuyuki Ebihara, Toyoyuki Hanazawa, Toshinori Nakayama, Kiyoshi Hirahara
    Pharmacology & Therapeutics 247 108445-108445 2023年7月  査読有り筆頭著者
  • Ryo Koyama-Nasu, Motoko Y Kimura, Masahiro Kiuchi, Ami Aoki, Yangsong Wang, Yukiyoshi Mita, Ichita Hasegawa, Yukihiro Endo, Atsushi Onodera, Kiyoshi Hirahara, Shinichiro Motohashi, Toshinori Nakayama
    Cancer immunology research 2023年5月22日  査読有り
    Tumor-specific CD8+ T cells play a pivotal role in anti-tumor immunity and are a key target of immunotherapeutic approaches. Intratumoral CD8+ T cells are heterogeneous; Tcf1+ stem-like CD8+ T cells give rise to their cytotoxic progeny - Tim-3+ terminally differentiated CD8+ T cells. However, where and how this differentiation process occurs has not been elucidated. We herein show that terminally differentiated CD8+ T cells can be generated within tumor-draining lymph nodes (TDLNs) and that CD69 expression on tumor-specific CD8+ T cells controls its differentiation process through regulating the expression of the transcription factor TOX. In TDLNs, CD69 deficiency diminished TOX expression in tumor-specific CD8+ T cells, and consequently promoted generation of functional terminally differentiated CD8+ T cells. Anti-CD69 administration promoted the generation of terminally differentiated CD8+ T cells, and the combined use of anti-CD69 and anti-PD-1 showed an efficient anti-tumor effect. Thus, CD69 is an attractive target for cancer immunotherapy that synergizes with immune checkpoint blockade.

MISC

 16

書籍等出版物

 8
  • 小野寺 淳, 上田 敏 (担当:分担執筆, 範囲:第4節)
    株式会社シービーアール 2023年12月 (ISBN: 9784911108222)
  • 小野寺 淳, 小久保 幸太, 木内 政宏, 岩村 千秋, 平原 潔, 山下 政克 (担当:分担執筆, 範囲:第5章 免疫系の恒常性破綻と疾患, 検査, 治療)
    羊土社 2023年11月 (ISBN: 9784758121682)
  • 小野寺 淳, 中山 俊憲 (担当:共訳, 範囲:第14章 アレルギーと寄生虫に対する免疫応答) (原著:Array)
    メディカル・サイエンス・インターナショナル 2023年8月 (ISBN: 9784815730819)
  • 中山俊憲, 小野寺淳 (担当:共訳, 範囲:第IV部、適応免疫応答 第9章 T細胞性免疫応答) (原著:Array)
    南江堂 2019年3月 (ISBN: 9784524251155)
  • Onodera, A, Kokubo, K, Nakayama, T (担当:共著)
    Gene Expression and Regulation in Mammalian Cells - Transcription From General Aspects 2018年2月 (ISBN: 9789535138563)

講演・口頭発表等

 67

共同研究・競争的資金等の研究課題

 8

社会貢献活動

 17