大学院医学研究院

縄井 バハテヤリラヒムトラ

ナワイ バハテヤリラヒムトラ  (Bahityar Rahmutulla Nawai)

基本情報

所属
千葉大学 大学院医学研究院 特任研究員
学位
医学博士(2014年3月 千葉大学)

J-GLOBAL ID
201801008495627577
researchmap会員ID
B000306363

論文

 67
  • Takayuki Hoshii, Sota Kikuchi, Tomoya Kujirai, Takeshi Masuda, Tomoko Ito, Satoshi Yasuda, Makoto Matsumoto, Bahityar Rahmutulla, Masaki Fukuyo, Takeshi Murata, Hitoshi Kurumizaka, Atsushi Kaneda
    Nucleic acids research 2024年7月11日  査読有り
    The H3K4 methyltransferase SETD1A plays an essential role in both development and cancer. However, essential components involved in SETD1A chromatin binding remain unclear. Here, we discovered that BOD1L exhibits the highest correlated SETD1A co-dependency in human cancer cell lines. BOD1L knockout reduces leukemia cells in vitro and in vivo, and mimics the transcriptional profiles observed in SETD1A knockout cells. The loss of BOD1L immediately reduced SETD1A distribution at transcriptional start sites (TSS), induced transcriptional elongation defect, and increased the RNA polymerase II content at TSS; however, it did not reduce H3K4me3. The Shg1 domain of BOD1L has a DNA binding ability, and a tryptophan residue (W104) in the domain recruits SETD1A to chromatin through the association with SETD1A FLOS domain. In addition, the BOD1L-SETD1A complex associates with transcriptional regulators, including E2Fs. These results reveal that BOD1L mediates chromatin and SETD1A, and regulates the non-canonical function of SETD1A in transcription.
  • Tianhui Zhu, Atsushi Okabe, Genki Usui, Ryoji Fujiki, Daichi Komiyama, Kie Kyon Huang, Motoaki Seki, Masaki Fukuyo, Hiroyuki Abe, Meng Ning, Tomoka Okada, Mizuki Minami, Makoto Matsumoto, Qin Fan, Bahityar Rahmutulla, Takayuki Hoshii, Patrick Tan, Teppei Morikawa, Tetsuo Ushiku, Atsushi Kaneda
    NAR cancer 6(2) zcae020 2024年6月  
    Enhancer cis-regulatory elements play critical roles in gene regulation at many stages of cell growth. Enhancers in cancer cells also regulate the transcription of oncogenes. In this study, we performed a comprehensive analysis of long-range chromatin interactions, histone modifications, chromatin accessibility and expression in two gastric cancer (GC) cell lines compared to normal gastric epithelial cells. We found that GC-specific enhancers marked by histone modifications can activate a population of genes, including some oncogenes, by interacting with their proximal promoters. In addition, motif analysis of enhancer-promoter interacting enhancers showed that GC-specific transcription factors are enriched. Among them, we found that MYB is crucial for GC cell growth and activated by the enhancer with an enhancer-promoter loop and TCF7 upregulation. Clinical GC samples showed epigenetic activation of enhancers at the MYB locus and significant upregulation of TCF7 and MYB, regardless of molecular GC subtype and clinicopathological factors. Single-cell RNA sequencing of gastric mucosa with intestinal metaplasia showed high expression of TCF7 and MYB in intestinal stem cells. When we inactivated the loop-forming enhancer at the MYB locus using CRISPR interference (dCas9-KRAB), GC cell growth was significantly inhibited. In conclusion, we identified MYB as an oncogene activated by a loop-forming enhancer and contributing to GC cell growth.
  • Harue Mizokami, Atsushi Okabe, Ruchi Choudhary, Masato Mima, Kenta Saeda, Masaki Fukuyo, Bahityar Rahmutulla, Motoaki Seki, Boon-Cher Goh, Satoru Kondo, Hirotomo Dochi, Makiko Moriyama-Kita, Kiyoshi Misawa, Toyoyuki Hanazawa, Patrick Tan, Tomokazu Yoshizaki, Melissa Jane Fullwood, Atsushi Kaneda
    eBioMedicine 102 105057-105057 2024年4月  
  • Sanji Kanaoka, Atsushi Okabe, Manato Kanesaka, Bahityar Rahmutulla, Masaki Fukuyo, Motoaki Seki, Takayuki Hoshii, Hiroaki Sato, Yusuke Imamura, Shinichi Sakamoto, Tomohiko Ichikawa, Atsushi Kaneda
    Cancer Letters 2024年4月  
  • Kiyoko Takane, Tingwei Cai, Rei Noguchi, Yoshimasa Gohda, Tsuneo Ikenoue, Kiyoshi Yamaguchi, Yasunori Ota, Tomomichi Kiyomatsu, Hideaki Yano, Masaki Fukuyo, Motoaki Seki, Rahmutulla Bahityar, Atsushi Kaneda, Yoichi Furukawa
    Oncology 2024年1月23日  
    INTRODUCTION: Pseudomyxoma peritonei (PMP) is a disease characterized by progressive accumulation of intraperitoneal mucinous ascites produced by neoplasms in the abdominal cavity. Since the prognosis of patients with PMP remain unsatisfactory, the development of effective therapeutic drug(s) is a matter of pressing concern. Genetic analyses of PMP have clarified the frequent activation of GNAS and/or KRAS. However, the involvement of global epigenetic alterations in PMPs has not been reported. METHODS: To clarify the genetic background of the 15 PMP tumors, we performed genetic analysis using AmpliSeq Cancer HotSpot Panel v2. We further investigated global DNA methylation in the 15 tumors and eight non-cancerous colonic epithelial cells using Methylation EPIC array BeadChip (Infinium 850k) containing a total of 865,918 probes. RESULTS: This is the first report of comprehensive DNA methylation profiles of PMPs in the world. We clarified that the 15 PMPs could be classified into at least two epigenotypes, unique methylation epigenotype (UME) and normal-like methylation epigenotype (NLME), and that genes associated with neuronal development and synaptic signaling may be involved in the development of PMPs. In addition, we identified a set of hypermethylation marker genes such as HOXD1 and TSPYL5 in the 15 PMPs. CONCLUSIONS: These findings may help the understanding of the molecular mechanism(s) of PMP and contribute to the development of therapeutic strategies for this life-threatening disease.

MISC

 44

所属学協会

 1