研究者業績

関屋 大雄

セキヤ ヒロオ  (Hiroo Sekiya)

基本情報

所属
千葉大学 大学院情報学研究院 教授
湘潭大学 Xiangtan University Honored Professor
長崎総合科学大学 客員教授
学位
博士(工学)(慶應義塾大学)

ORCID ID
 https://orcid.org/0000-0003-3557-1463
J-GLOBAL ID
200901086143684628
researchmap会員ID
1000357243

外部リンク

令和6年-      千葉大学大学院情報学研究院教授
平成30年-令和6年 千葉大学大学院工学研究院 教授
平成28年-平成30年 千葉大学大学院融合科学研究科 教授
平成27年-令和2年 湘潭大学(Xiangtan University) Honorary Professor
平成23年-平成28年 千葉大学大学院融合科学研究科 准教授
平成20年-平成22年 Wright State University 訪問研究員(日本学術振興会海外特別研究員)
平成19年-平成23年 千葉大学大学院融合科学研究科 助教
平成13年-平成19年 千葉大学大学院自然科学研究科 助手

平成13年 慶應義塾大学院理工学研究科電気工学専攻博士課程修了 博士(工学)


受賞

 7

論文

 138
  • Wenqi Zhu, Yutaro Komiyama, Ayano Komanaka, Kien Nguyen, Hiroo Sekiya
    IEEE Transactions on Industrial Electronics 71(9) 10433-10443 2024年9月1日  
    This article presents a load-independent zero-current switching (ZCS) parallel-resonant inverter with a constant output current. The proposed inverter features constant-current output inherently without the need for any control method. Moreover, ZCS is achieved despite load variations, ensuring high power efficiency even at MHz-order switching frequencies. We conduct a comprehensive circuit analysis of the proposed inverter and provide a step-by-step parameter design method for achieving load-independent conditions. Additionally, a 25 W, 1 MHz prototype of the proposed inverter was implemented. In the circuit experiment, constant current output and ZCS were achieved across the entire range of load variations, which demonstrated the effectiveness of the proposed load-independent inverter.
  • Hisa Aki Tanaka, Yoji Yabe, Somei Suga, Akira Keida, Kai Maeda, Fumito Mori, Hiroo Sekiya
    EPL 146(5) 2024年6月  
    Synchronisability of limit cycle oscillators has been measured by the width of the synchronous frequency band, known as the Arnold tongue, concerning external forcing. We clarify a fundamental limit on maximizing this synchronisability within a specified extra low power budget, which underlies an important and ubiquitous problem in nonlinear science related to an efficient synchronisation of weakly forced nonlinear oscillators. In this letter, injection-locked Class-E oscillators are considered as a practical case study, and we systematically analyse their power consumption; our observations demonstrate the independence of power consumption in the oscillator from power consumption in the injection circuit and verify the dependency of power consumption in the oscillator solely on its oscillation frequency. These systematic observations, followed by the mathematical optimisation establish the existence of a fundamental limit on synchronisability, validated through systematic circuit simulations. The results offer insights into the energetics of synchronisation for a specific class of injection-locked oscillators.
  • Wenqi Zhu, Ayano Komanaka, Yutaro Komiyama, Hirotaka Koizumi, Hiroo Sekiya
    IEEE Journal of Emerging and Selected Topics in Power Electronics 2024年  
  • Hiroo Sekiya
    Wireless Power Transfer Technologies: Theory and technologies 89-117 2024年1月1日  
  • Chengxin Li, Saiqin Long, Haolin Liu, Youngjune Choi, Hiroo Sekiya, Zhetao Li
    IEEE Transactions on Information Forensics and Security 19 6070-6083 2024年  
    Sparse Mobile CrowdSensing (SMCS) effectively lowers sensing costs while maintaining data quality, offering an alternative approach to data collection. Unfortunately, the fact that data contain sensitive information raises serious privacy concerns. Local Differential Privacy (LDP) has emerged as the de facto standard for ensuring data privacy. However, the LDP based on the perturbation concept causes a substantial reduction in the data utility of the SMCS system. To address this problem, we propose a novel scheme named enhancing Sparse mobile crowdsensing With manifold Optimization and differential Privacy (SWOP). Specifically, we first revisit the Gaussian mechanism based on the fact that data utility intervals are ubiquitous in sensing tasks, and introduce a novel perturbation mechanism, namely Truncated Gaussian Mechanism (TGM). Subsequently, we perturb user-collected data by locally injecting noise sampled from TGM and deduce a sufficient condition for the scale parameter to ensure ϵ -LDP. Furthermore, we model the data inference with privacy-preserving properties as an unconstrained optimization problem on a Riemannian manifold and solve it using the nonlinear conjugate gradient method. Extensive experiments on large-scale real-world and synthetic datasets are conducted to evaluate the proposed scheme. The results demonstrate that SWOP can greatly enhance the utility of data inference while ensuring workers' data privacy compared to baseline models.

MISC

 712

共同研究・競争的資金等の研究課題

 20

産業財産権

 19