研究者業績

清野 宏

キヨノ ヒロシ  (Hiroshi Kiyono)

基本情報

所属
千葉大学 未来医療教育研究機構 特任教授 (卓越教授)
学位
医学博士

J-GLOBAL ID
200901090720634306
researchmap会員ID
0000021773

外部リンク

Dr. Kiyono obtained his dental degree (D.D.S.) from Nihon University, and Ph. D. from the University of Alabama at Birmingham (UAB). His background as a dentist combined with extensive research experience in the field of Mucosal Immunology at UAB, Max-Planck Institute, Osaka University and now, the University of Tokyo make him exceptionally well qualified to lead the current and future directions of mucosal immunology and mucosal vaccine. To reflect his scientific contribution, he has been listed in ISI Highly Cited Researchers’ List since 2005. He is the past President of Society for Mucosal Immunology. He received of several prestigious awards including NIH New Investigator Research Award, NIH Research Career Development Award, The Japanese Society for Vaccinology Takahashi Award, and Hideyo Noguchi Memorial Medical Science Award. He has a total of 422 publications in peer review journals and edited a total of 20 books. He is currently Dean, the Institute of Medical Science, the University of Tokyo.

論文

 398

MISC

 642
  • 高橋 裕, 佐藤 慎太郎, 清野 宏, 山内 祥生, 佐藤 隆一郎
    日本生化学会大会プログラム・講演要旨集 96回 [2P-473] 2023年10月  
  • 佐藤 慎太郎, 植松 智, 清野 宏
    炎症と免疫 28(3) 248-252 2020年4月  
    腸管は我々の体内に存在するが、体表面を覆う皮膚と同様、つねに外的環境に曝されている。そこには個体にとって「非自己」である腸内細菌叢も存在し、免疫担当細胞や抗菌ペプチドなどを産生する上皮細胞と協働しながら絶妙なバランスを保ち、腸内の恒常性を維持していると考えられている。何らかの原因でこのバランスが崩れると、一時的に、時には慢性的に、炎症反応が誘発され、炎症性腸疾患などのような自己免疫疾患の原因になり得ることがわかってきた。(著者抄録)
  • So-Ichiro Hirata, Takahiro Nagatake, Kento Sawane, Koji Hosomi, Tetsuya Honda, Sachiko Ono, Noriko Shibuya, Emiko Saito, Jun Adachi, Yuichi Abe, Junko Isoyama, Hidehiko Suzuki, Ayu Matsunaga, Takeshi Tomonaga, Hiroshi Kiyono, Kenji Kabashima, Makoto Arita, Jun Kunisawa
    Allergy 2020年2月6日  
    BACKGROUND: Maternal dietary exposures are considered to influence the development of infant allergies through changes in the composition of breast milk. Cohort studies have shown that ω3 PUFA in breast milk may have a beneficial effect on the preventing of allergies in infants; however, the underlying mechanisms remain to be investigated. We investigated how the maternal intake of dietary ω3 PUFAs affects fatty acid profiles in the breast milk and their pups and reduced the incidence of allergic diseases in the pups. METHODS: Contact hypersensitivity (CHS) induced by 2,4-dinitrofluorobenzene and fluorescein isothiocyanate was applied to the skin in pups reared by mother maintained with diets mainly containing ω3 or ω6 PUFAs. Skin inflammation, immune cell populations and expression levels of immunomodulatory molecules in pups and/or human cell line were investigated by using flow cytometric, immunohistologic, and quantitative RT-PCR analyses. ω3 PUFA metabolites in breast milk and infant's serum were evaluated by lipidomics analysis using LC-MS/MS. RESULTS: We show that maternal intake of linseed oil, containing abundant ω 3 α-linolenic acid, resulted in the increased levels of ω 3 docosapentaenoic acid (DPA) and its 14-lipoxygenation products in the breast milk of mouse dams; these metabolites increased the expression of TNF-related apoptosis-inducing ligand (TRAIL) on plasmacytoid dendritic cells (pDCs) in their pups and thus inhibited infant CHS. Indeed, the administration of DPA-derived 14-lipoxygenation products to mouse pups ameliorated their DNFB CHS. CONCLUSION: These findings suggest that an inhibitory mechanism in infant skin allergy is induced through maternal metabolism of dietary ω3 PUFAs in mice.
  • Junya Isobe, Shintarou Maeda, Yuuki Obata, Keito Iizuka, Yutaka Nakamura, Yumiko Fujimura, Tatsuki Kimizuka, Kouya Hattori, Yun-Gi Kim, Tatsuya Morita, Ikuo Kimura, Stefan Offermanns, Takahiro Adachi, Atsuhito Nakao, Hiroshi Kiyono, Daisuke Takahashi, Koji Hase
    International immunology 2019年12月20日  
    Secretory immunoglobulin A, the most abundant antibody isotype in the body, maintains a mutual relationship with commensal bacteria and acts as a primary barrier at the mucosal surface. Colonization by commensal bacteria induces an IgA response, at least partly through a T-cell-independent process. However, the mechanism underlying the commensal-bacteria-induced T-cell-independent IgA response has yet to be fully clarified. Here, we show that commensal-bacteria-derived butyrate promotes T-cell-independent IgA class switching recombination (CSR) in the mouse colon. Notably, the butyrate concentration in human stools correlated positively with the amount of IgA. Butyrate upregulated the production of transforming growth factor β1 and all-trans retinoic acid by CD103+CD11b+ dendritic cells, both of which are critical for T-cell-independent IgA CSR. This effect was mediated by G-protein-coupled receptor 41 (GPR41/FFA3) and GPR109a/HCA2, and the inhibition of histone deacetylase. The butyrate-induced IgA response reinforced the colonic barrier function, preventing systemic bacterial dissemination under inflammatory conditions. These observations demonstrate that commensal-bacteria-derived butyrate contributes to the maintenance of the gut immune homeostasis by facilitating the T-cell-independent IgA response in the colon.
  • 柴田 納央子, 國澤 純, 安藤 正浩, 細川 正人, 堀井 俊平, 細見 晃司, 竹山 春子, 清野 宏
    日本生物工学会大会講演要旨集 2019年 213-213 2019年8月  

共同研究・競争的資金等の研究課題

 12