Zixuan Xue, Hiroaki Kuze, Hitoshi Irie
ATMOSPHERE 12(9) 2021年9月
The retrieval of the aerosol optical thickness (AOT) from remotely-sensed data relies on the adopted aerosol model. However, the method of this technique has been rather limited because of the high variability of the surface albedo, in addition to the spatial variability in the aerosol properties over the land surfaces. To overcome unsolved problems, we proposed a method for the visibility-derived AOT estimation from SKYNET-based measurement and daytime satellite images with a custom aerosol model over the Chiba area (35.62 degrees N, 140.10 degrees E), which is located in the greater Tokyo metropolitan area in Japan. Different from conventionally-used aerosol models for the boundary layer, we created a custom aerosol model by using sky-radiometer observation data of aerosol volume size distribution and refractive indices, coupled with spectral response functions (SPFs) of satellite visible bands to alleviate the wide range of path-scattered radiance. We utilized the radiative transfer code 6S to implement the radiative transfer calculation based on the created custom aerosol model. The concurrent data from ground-based measurement are used in the radiative analysis, namely the temporal variation of AOT from SKYNET. The radiative estimation conducted under clear-sky conditions with minimum aerosol loading is used for the determination of the surface albedo, so that the 6S simulation yields a well-defined relation between total radiance and surface albedo. We made look-up tables (LUTs) pixel-by-pixel over the Chiba area for the custom aerosol model to retrieve the satellite AOT distribution based on the surface albedo. Therefore, such a reference of surface albedo generated from clear-sky conditions, in turn, can be employed to retrieve the spatial distribution of AOT on both clear and relatively turbid days. The value for the AOTs retrieved using the custom aerosol model is found to be stable than conventionally-used typical aerosol models, indicating that our method yields substantially better performance.