Kazuyoshi Kobayashi, Kouhei Sakurai, Hiroaki Hiramatsu, Ken-ichi Inada, Kazuya Shiogama, Shinya Nakamura, Fumiko Suemasa, Kyosuke Kobayashi, Seiya Imoto, Takeshi Haraguchi, Hiroaki Ito, Aya Ishizaka, Yutaka Tsutsumi, Hideo Iba
SCIENTIFIC REPORTS 5 8428 2015年2月 査読有り
In epithelial cells, miRNA-199a-5p/-3p and Brm, a catalytic subunit of the SWI/SNF complex were previously shown to form a double-negative feedback loop through EGR1, by which human cancer cell lines tend to fall into either of the steady states, types 1 [miR-199a(2)/Brm(1)/EGR1(2)] and 2 [miR-199a(1)/Brm (2)/EGR1(1)]. We show here, that type 2 cells, unlike type 1, failed to form colonies in soft agar, and that CD44, MET, CAV1 and CAV2 (miR-199a targets), all of which function as plasma membrane sensors and can co-localize in caveolae, are expressed specifically in type 1 cells. Single knockdown of any of them suppressed anchorage-independent growth of type 1 cells, indicating that the miR-199a/Brm/EGR1 axis is a determinant of anchorage-independent growth. Importantly, two coherent feedforward loops are integrated into this axis, supporting the robustness of type 1-specific gene expression and exemplifying how the miRNA-target gene relationship can be stably sustained in a variety of epithelial tumors.