研究者業績

小林 和善

コバヤシ カズヨシ  (KAZUYOSHI KOBAYASHI)

基本情報

所属
千葉大学 真菌医学研究センター 特任助教
学位
博士 (理学)

J-GLOBAL ID
201901020233124199
researchmap会員ID
B000352371

論文

 8
  • Hiramatsu H, Kobayashi K, Kobayashi K, Haraguchi T, Ino Y, Todo T, Iba H
    Scientific reports 8(1) 16079 2018年10月  査読有り
  • Kobayashi K, Hiramatsu H, Nakamura S, Kobayashi K, Haraguchi T, Iba H
    Scientific reports 7(1) 11772 2017年9月  査読有り
  • Kyousuke Kobayashi, Fumiko Suemasa, Hiroshi Sagara, Shinya Nakamura, Yasushi Ino, Kazuyoshi Kobayashi, Hiroaki Hiramatsu, Takeshi Haraguchi, Kazuo Kurokawa, Tomoki Todo, Akihiko Nakano, Hideo Iba
    SCIENTIFIC REPORTS 7(1) 6650 2017年7月  査読有り
    Because several studies have shown that exogenous miR-199a has antiviral effects against various viruses, including herpesviruses, we examined how miR-199a exerts its antiviral effects using epithelial tumour cell lines infected with herpes simplex virus-1 (HSV-1). We found that both miR-199a-5p and -3p impair the secondary envelopment of HSV-1 by suppressing their common target, ARHGAP21, a Golgi-localized GTPase-activating protein for Cdc42. We further found that the trans-cisternae of the Golgi apparatus are a potential membrane compartment for secondary envelopment. Exogenous expression of either pre-miR-199a or sh-ARHGAP21 exhibited shared phenotypes i.e. alteration of Golgi function in uninfected cells, inhibition of HSV-1 secondary envelopment, and reduction of trans-Golgi proteins upon HSV-1 infection. A constitutively active form of Cdc42 also inhibited HSV-1 secondary envelopment. Endogenous levels of miR-199a in epithelial tumour cell lines were negatively correlated with the efficiency of HSV-1 secondary envelopment within these cells. These results suggest that miR-199a is a crucial regulator of Cdc42 activity on Golgi membranes, which is important for the maintenance of Golgi function and for the secondary envelopment of HSV-1 upon its infection.
  • Hiroaki Hiramatsu, Kazuyoshi Kobayashi, Kyousuke Kobayashi, Takeshi Haraguchi, Yasushi Ino, Tomoki Todo, Hideo Iba
    SCIENTIFIC REPORTS 7(1) 889 2017年4月  査読有り
    Glioma initiating cells (GICs) are thought to contribute to therapeutic resistance and tumor recurrence in glioblastoma, a lethal primary brain tumor in adults. Although the stem-like properties of GICs, such as self-renewal and tumorigenicity, are epigenetically regulated, the role of a major chromatin remodeling complex in human, the SWI/SNF complex, remains unknown in these cells. We here demonstrate that the SWI/SNF core complex, that is associated with a unique corepressor complex through the d4-family proteins, DPF1 or DPF3 alpha, plays essential roles in stemness maintenance in GICs. The serum-induced differentiation of GICs downregulated the endogenous expression of DPF1 and DPF3 alpha, and the shRNA-mediated knockdown of each gene reduced both sphere-forming ability and tumor-forming activity in a mouse xenograft model. Rescue experiments revealed that DPF1 has dominant effects over DPF3 alpha. Notably, whereas we have previously reported that d4-family members can function as adaptor proteins between the SWI/SNF complex and NF-kappa B dimers, this does not significantly contribute to maintaining the stemness properties of GICs. Instead, these proteins were found to link a corepressor complex containing the nuclear receptor, TLX, and LSD1/RCOR2 with the SWI/SNF core complex. Collectively, our results indicate that DPF1 and DPF3a are potential therapeutic targets for glioblastoma.
  • Takeshi Haraguchi, Masayuki Kondo, Ryo Uchikawa, Kazuyoshi Kobayashi, Hiroaki Hiramatsu, Kyousuke Kobayashi, Ung Weng Chit, Takanobu Shimizu, Hideo Iba
    SCIENTIFIC REPORTS 6 21117 2016年2月  査読有り
    Whereas miR-200 family is known to be involved in the epithelial-to-mesenchymal transition (EMT), a crucial biological process observed in normal and pathological contexts, it has been largely unclear how far the functional levels of these tiny RNAs alone can propagate the molecular events to accomplish this process within several days. By developing a potent inhibitor of miR-200 family members (TuD-141/200c), the expression of which is strictly regulatable by the Tet (tetracycline)-On system, we found using a human colorectal cell line, HCT116, that several direct gene target mRNAs (Zeb1/Zeb2, ESRP1, FN1and FHOD1) of miR-200 family were elevated with distinct kinetics. Prompt induction of the transcriptional suppressors, Zeb1/Zeb2 in turn reduced the expression levels of miR-200c/-141 locus, EpCAM, ESRP1 and E-Cad. The loss of ESRP1 subsequently switched the splicing isoforms of CD44 and p120 catenin mRNAs to mesenchymal type. Importantly, within 9 days after the release from the inhibition of miR-200 family, all of the expression changes in the 14 genes observed in this study returned to their original levels in the epithelial cells. This suggests that the inherent epithelial plasticity is supported by a weak retention of key regulatory gene expression in either the epithelial or mesenchymal states through epigenetic regulation.
  • Kazuyoshi Kobayashi, Kouhei Sakurai, Hiroaki Hiramatsu, Ken-ichi Inada, Kazuya Shiogama, Shinya Nakamura, Fumiko Suemasa, Kyosuke Kobayashi, Seiya Imoto, Takeshi Haraguchi, Hiroaki Ito, Aya Ishizaka, Yutaka Tsutsumi, Hideo Iba
    SCIENTIFIC REPORTS 5 8428 2015年2月  査読有り
    In epithelial cells, miRNA-199a-5p/-3p and Brm, a catalytic subunit of the SWI/SNF complex were previously shown to form a double-negative feedback loop through EGR1, by which human cancer cell lines tend to fall into either of the steady states, types 1 [miR-199a(2)/Brm(1)/EGR1(2)] and 2 [miR-199a(1)/Brm (2)/EGR1(1)]. We show here, that type 2 cells, unlike type 1, failed to form colonies in soft agar, and that CD44, MET, CAV1 and CAV2 (miR-199a targets), all of which function as plasma membrane sensors and can co-localize in caveolae, are expressed specifically in type 1 cells. Single knockdown of any of them suppressed anchorage-independent growth of type 1 cells, indicating that the miR-199a/Brm/EGR1 axis is a determinant of anchorage-independent growth. Importantly, two coherent feedforward loops are integrated into this axis, supporting the robustness of type 1-specific gene expression and exemplifying how the miRNA-target gene relationship can be stably sustained in a variety of epithelial tumors.
  • Takanobu Tagawa, Takeshi Haraguchi, Hiroaki Hiramatsu, Kazuyoshi Kobayashi, Kouhei Sakurai, Ken-Ichi Inada, Hideo Iba
    BIOCHEMICAL JOURNAL 447(3) 449-455 2012年11月  査読有り
    The mammalian transcriptional factors, Cdx1 and Cdx2 (Cdx is caudal-type homeobox) are paralogues and critical for the cellular differentiation of intestinal or colorectal epithelia. It has been reported previously that in Cdx1 transgenic or knockout mice, endogenous Cdx2 levels are inversely correlated with Cdx1 levels. Recently, we found that exogenous Cdx1 expression can suppress Cdx2 in a human colorectal tumour cell line, SW480, although the underlying molecular mechanisms were unclear. In the present study, we show that several microRNAs induced by exogenous Cdx1 expression directly bind to the CDX2 mRNA 3'UTR (untranslated region) to destabilize these transcripts, finally leading to their degradation. Using microarray analysis, we found that several miRNAs that were computationally predicted to target CDX2 mRNAs are up-regulated by exogenous Cdx 1 expression in SW480 cells. Among these molecules, we identified miR-9, miR-16 and miR-22 as having the potential to suppress Cdx2 through the binding of the 3'UTR to its transcript. Importantly, simultaneous mutations of both the miR-9- and miR-16-binding sites in the CDX2 3'UTR were shown to be sufficient to block Cdx2 suppression. The results of the present study suggest a unique feature of miRNAs in which they contribute to homoeostasis by limiting the levels of transcription factors belonging to the same gene family.
  • Ishizaka A, Mizutani T, Kobayashi K, Tando T, Sakurai K, Fujiwara T, Iba H
    The Journal of biological chemistry 287(15) 11924-11933 2012年4月  査読有り