研究者業績

川本 一彦

Kazuhiko Kawamoto

基本情報

所属
千葉大学 大学院情報学研究院 教授
学位
博士(工学)(2002年3月 千葉大学)

連絡先
kawafaculty.chiba-u.jp
ORCID ID
 https://orcid.org/0000-0003-3701-1961
J-GLOBAL ID
201101069474935716
researchmap会員ID
B000000393

外部リンク

論文

 137
  • Yutaka Hatakeyama, Kazuhiko Kawamoto, Hajime Nobuhara, Shin-ichi Yoshida, Kaoru Hirota
    Journal of Advanced Computational Intelligence and Intelligent Informatics 8(6) 639-648 2004年11月20日  査読有り
  • Kazuhiko Kawamoto, Naoya Ohnishi, Atsushi Imiya, Reinhard Klette, Kaoru Hirota
    Journal of Advanced Computational Intelligence and Intelligent Informatics 8(5) 469-476 2004年9月20日  査読有り
  • Atushi Imiya, Hisashi Ootani, Kazuhiko Kawamoto
    Neurocomputing 57(1-4) 171-187 2004年3月  査読有り
    We construct an artificial neural network which achieves model selection and fitting concurrently if models are linear manifolds and data points distribute in the union of finite number of linear manifolds. For the achievement of this procedure, we are required to develop a method which determines the dimensions and parameters of each model and estimates the number of models in a data set. Therefore, we separate the method into two steps, in the first step, the dimension and the parameters of a model are determined applying the principal component analyzer for local data, and in the second step, the region is expanded using an equivalence relation based on the parameters. Our algorithm is also considered to be a generalization of the Hough transform which detects lines on a plane, since a line is a linear manifold on a plane. © 2003 Elsevier B.V. All rights reserved.
  • Kaoru Hirota, Hajime Nobuhara, Kazuhiko Kawamoto, Shin’ichi Yoshida
    Journal of Advanced Computational Intelligence and Intelligent Informatics 8(1) 72-80 2004年1月20日  査読有り
  • K. Kawamoto, K. Hirota, N. Wakami
    Proc. Int. Symp. on Computational Intelligence and Industrial Applications 2004年  査読有り
  • H. Takahashi, K. Kawamoto, Y. Natori, N. Tanzawa, K. Hirota
    Proc. Int. Symp. on Computational Intelligence and Industrial Applications 2004年  査読有り
  • S. Morishige, K. Kawamoto, K. Hirota
    Proc. Int. Symp. on Computational Intelligence and Industrial Applications 31st 2004年  査読有り
  • M. R. Widyanto, B. Kusumoputro, K. Kawamoto, K. Hirot
    Proc. Int. Symp. on Computational Intelligence and Industrial Applications 2004年  査読有り
  • Kazuhiko Kawamoto, Kaoru. Hirota
    Proc. of AFSS 2004 Int. Conf. on Fuzzy Systems 2-6 2004年  査読有り
  • Kazuhiko Kawamoto, Kaoru. Hirota
    Proc. of Joint 2nd Int. Conf. on Soft Computing and Intelligent Systems and 3rd Int. Symp. on Advanced Intelligent Systems 2004年  査読有り
  • M. R. Widyanto, K. Kawamoto, K. Hirota
    Proc. of Joint 2nd Int. Conf. on Soft Computing and Intelligent Systems and 3rd Int. Symp. on Advanced Intelligent Systems 2004年  査読有り
  • E. M. Iyoda, T. Shibata, H. Nobuhara, Y. Hatakeyama, K. Kawamoto, K. Hirota
    Proc. of Joint 2nd Int. Conf. on Soft Computing and Intelligent Systems and 3rd Int. Symp. on Advanced Intelligent Systems 2004年  査読有り
  • K. Urata, S. Yoshida, H. Nobuhara, K. Kawamoto, Y. Hatakeyama, T. Kaino, K. Hirota
    Proc. of Joint 2nd Int. Conf. on Soft Computing and Intelligent Systems and 3rd Int. Symp. on Advanced Intelligent Systems 2004年  査読有り
  • Kaoru Hirota, Hajime Nobuhara, Kazuhiko Kawamoto, Shin Ichi Yoshida
    Iranian Journal of Fuzzy Systems 1(1) 33-42 2004年  査読有り
    The pioneer work of image compression/reconstruction based on fuzzy relational equations (ICF) and the related works are introduced. The 1CF regards an original image as a fuzzy relation by embedding the brightness level into [0,1], The compression/reconstruction of ICF correspond to the composition/solving inverse problem formulated on fuzzy relational equations. Optimizations of ICF can be consequently deduced based on fuzzy relational calculus, i.e., computation time reduction/improvement of reconstructed image quality are correspond to a fast solving method/finding an approximate solution of fuzzy relational equations, respectively. Through the experiments using test images extracted from Standard Image DataBAse (S1DBA), the effectiveness of the ICF and its optimizations are shown.
  • Kazuhiko Kawamoto, Kaoru Hirota
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 3322 151-163 2004年  査読有り
    We propose a robust and efficient algorithm for curve tracking in a sequence of binary images. First it verifies the presence of a curve by votes, whose values indicate the number of the points on the curve, thus being able to robustly detect curves against outlier and occlusion. Furthermore, we introduce a procedure for preventing redundant verification by determining equivalence curves in the digital space to reduce the time complexity. Second it propagates the distribution which represents the presence of the curve to the successive image of a given sequence. This temporal propagation enables to focus on the potential region where the curves detected at time t -1 are likely to appear at time t. As a result, the time complexity does not depend on the dimension of the curve to be detected. To evaluate the performance, we use three noisy image sequences, consisting of 90 frames with 320 × 240 pixels. The results shows that the algorithm successfully tracks the target even in noisy or cluttered binary images. © Springer-Verlag 2004.
  • 川本 一彦, 山田 大輔, 井宮 淳, ラインハルトクリッタ, 廣田 薫
    情報処理学会論文誌コンピュータビジョンとイメージメディア(CVIM) 44(9) 46-54 2003年7月15日  査読有り
    カメラ運動が引き起こすオプティカルフローから,ビデオ画像中の平面領域を判定するアルゴリズムを提案する.オプティカルフローは,テクスチャや色に比べて,対象への依存度が低く,画像理解のための汎用的なセンシング手法を与えてくれる.このオプティカルフローの性質を利用して,シーンに依存しないアルゴリズムを提案する.提案アルゴリズムは,各画素ごとに,算出したフローベクトルと標準フローベクトルとの照合を行う非常に単純で高速な方法である.実画像による実験で,平面シーンに静止した障害物と動きのある障害物が現れても,約90%程度の精度で平面領域を抽出できること示す.また,この抽出結果が,時空間的に不規則な雑音によって乱されることを実験的に指摘し,中央値フィルタによる結果の改善もあわせて示す.We propose an algorithm for the detection of planar surface regions in a video sequence from optical flow caused by a monocular moving camera. Optical flow being a scene-independent measurement, the flow-based algorithm can be applied to various situations, while color-and texture-based algorithms depend on speci fic scenes such as roadway and indoor scenes. The algorithm detects a planar surface region by evaluating the difference between model flow and calculated flow. We demonstrate some results obtained by the algorithm for two real image sequences. Furthermore, indicating the results are corrupted by random noise in the spatio-temporal domain, we apply median filtering to the results to remove random noise.
  • Garcia Ruiz Ernest, Hajime Nobuhara, Kazuhiko Kawamoto, Shinichi Yoshida, Kaoru Hirota
    Proc. of the 30th SICE Symposium on Intelligent Systems 261-266 2003年  査読有り
  • K. Kawamoto, A. Imiya, K. Hirota
    Proc. of the 4rd Int. Symp. on Advanced Intelligent Systems 559-562 2003年  査読有り
  • M. R. Widyanto, B. Kusumoputro, H. Nobuhara, K. Kawamoto, S. Yoshida, K. Hirota
    Proc. of the 4th Int. Symp. on Advanced Intelligent Systems 2003年  査読有り
  • E. M. Iyoda, H. Nobuhara, K. Kawamoto, S. Yoshida, K. Hirota
    Proc. of the 4rd Int. Symp. on Advanced Intelligent Systems 158-161 2003年  査読有り
  • Y. Hatakeyama, H. Nobuhara, K. Kawamoto, K. Hirota
    Proc. of the 4rd Int. Symp. on Advanced Intelligent Systems 567-570 2003年  査読有り
  • Makoto Watanabe, Hajime Nobuhara, Kazuhiko Kawamoto, Shinich Yoshida, Kaoru Hirota
    Proc. of the 4th Int. Symp. on Advanced Intelligent System 517-520 2003年  査読有り
  • K. Kawamoto, N. Ohnishi, D. Yamada, A. Imiya, R. Klette, K. Hirota
    Proc. of Int. Conf. on Computational Cybernetics 2003年  査読有り
  • K. Hirota, S. Yoshida, H. Nobuhara, K. Kawamoto, N. Wakami
    Proc. of the Int. Sym. on Computational Intelligence and Intelligent Informatics 1-7 2003年  査読有り
  • K. Hirota, H. Nobuhara, K. Kawamoto, S. Yoshida
    Proc. of the 1st Int. Conf. on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management 17-21 2003年  査読有り
  • Kazuhiko Kawamoto, Atsushi Imiya, Kaoru Hirota
    Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science) 2734 389-399 2003年  査読有り
    We propose a method for recovering a 3D object from an unorganized image sequence, in which the order of the images and the corresponding points among the images are unknown, using a random sampling and voting process. Least squares methods such that the factorization method and the 8-point algorithm are not directly applicable to an unorganized image sequence, because the corresponding points are a priori unknown. The proposed method repeatedly generates relevant shape parameters from randomly sampled data as a series of hypotheses, and finally produces the solutions supported by a large number of the hypotheses. The method is demonstrated on synthetic and real data.
  • R. Widyanto, Megawati, K. Kawamoto, K. Hirota
    Proc. of Artificial and Computational Intelligence 2002年9月  査読有り
  • Atsushi Imiya, Keisuke Iwawaki, Kazuhiko Kawamoto
    Engineering Applications of Artificial Intelligence 15(2) 169-176 2002年4月  査読有り
    In this paper, we show that the randomized sampling and voting process detects optical flow. We introduce a random sampling method for solving the least-squares model-fitting problem using a mathematical property for the construction of pseudo-inverse. Using an appropriate number of images from a sequence of images, our method detects subpixel motion in this sequence. It is possible to compute subpixel motions from a long-time interval. We use the accumulator space for the unification of these flow vectors which are computed from different time intervals. Numerical examples for the test image sequences show the performance of our method. © 2002 Published by Elsevier Science Ltd.
  • Kazuhiko Kawamoto, Atsushi Imiya, Kaoru Hirota
    Proc. of Joint 1st Int. Conf. on Soft Computing and Intelligent Systems and 3rd Int. Symp. on Advanced Intelligent Systems 2002年  査読有り筆頭著者
  • A. Imiya, K. Kawamoto
    Proceedings - 1st International Symposium on 3D Data Processing Visualization and Transmission, 3DPVT 2002 632-635 2002年  査読有り
    © 2002 IEEE. It is possible to decompose a three-dimensional objects into a collection of shadows. The geometric relation permits one to decompose shadows of a three-dimensional object to shadows of planar objects. Using this geometric relations, we prove that a class of non-convex objects is reconstructible from a series of shadows.
  • Kazuhiko Kawamoto, Atsushi Imiya
    Pattern Recognition Letters 22(2) 199-207 2001年  査読有り
    In this paper, we propose a method for the detection of spatial points and lines from a sequence of images. Our method does not require any predetermination of point correspondences among images. With camera motion, a sequence of images defines data in a spatiotemporal domain. In this domain, a trajectory of point correspondences among images defines a curve segment. For the detection of the curve segment in the spatiotemporal domain, we develop a classification process for points in the spatiotemporal domain where the camera motion is known. For the classification process, we adopt the voting procedure which is the main concept underlying the Hough transform. © 2001 Elsevier Science B.V. All rights reserved.
  • Atsushi Imaya, Kazuhiko Kawamoto
    Pattern Recognition Letters 22(1) 75-83 2001年1月  査読有り
    We naturally classify plates as flat and boxes as of bulky structure. This understanding is based on the dimensionality of the objects. The dimensionality and orientation are important features for recognition of a 3D object, since these geometric properties are fundamental features for the classification of objects and for grasp-control for robots. In this paper, we derive a computational model for the classification of dimensionality of objects using properties of the mechanical moments of solid objects. Our model is based on the principal component analyzer (PCA) since the analyzer in the 3D Euclidean space derives directions of the mechanical moments of the objects from random samples. The directions of the principal components also determine the direction of objects. Therefore, our algorithm computes the orientations of objects in 3D space.
  • Atsushi Imiya, Kazuhiko Kawamoto
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2059 677-686 2001年  査読有り
    © Springer-Verlag Berlin Heidelberg 2001. This paper clarifies a sufficient condition for the reconstruction of an object from its shadows. The objects considered are finite closed convex regions in three-dimensional Euclidean space. First we show a negative result that a series of shadows measured using a camera moving along a circle on a plane is insufficient for the full reconstruction of an object even if the object is convex. Then, we show a positive result that a series of pairs of shadows measured using a general stereo system with some geometrical assumptions is sufficient for full reconstruction of a convex object.
  • Kazuhiko Kawamoto, Atsushi Imiya
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 1998 193-200 2001年  査読有り
    © Springer-Verlag Berlin Heidelberg 2001. In the series of papers, we proposed a method for threedimensional reconstruction from an image sequence without predetecting feature correspondences. In the method, we first collect all images and sample data, and second apply the reconstruction procedure. Therefore, the method is categorized into an off-line algorithm. In this paper, we deal with an on-line algorithm for three-dimensional reconstruction, if we sequentially measure images. Our method is based on the property that points and lines in space are uniquely computed from their projections between two images and among three images, respectively, if a camera system is calibrated. Using these property, our method determines both feature correspondences and three-dimensional positions of points and lines on an object.
  • Atsushi Imiya, Kazuhiko Kawamoto
    In Performance Characterization in Computer Vision, Kluwer Academic Publishers 227-240 2000年  
  • Atsushi Imiya, Kazuhiko Kawamoto
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 1715 36-50 1999年  査読有り
    © Springer-Verlag Berlin Heidelberg 1999. The least-squares method efficiently solves the model fitting problems, if we assume model equations. However, to the model fitting for a collection of models, the classification of data is required as prepro- cessing. We show that the randomized Hough transform achieves both the model fitting by the least-squares method and the classification of sample points by permutation simultaneously. Furthermore, we derive a dynamical system for the line detection by the Hough transform, which achieves grouping of sample points as the permutation of data sequence. The theoretical analysis in this paper verifies the reliability of the Hough- transform based template matching for the detection of shapes from a scene.
  • I.Fermin, A. Imiya, K. Kawamoto
    Proc. of 7th International Conference on Artificial Intelligence and Information-Control Systems of Robotics 47-58 1997年  査読有り

MISC

 232

講演・口頭発表等

 40

所属学協会

 5

共同研究・競争的資金等の研究課題

 12

産業財産権

 1