医学部附属病院

藤橋 浩太郎

フジハシコウタロウ  (Kohtaro Fujihashi)

基本情報

所属
千葉大学 医学部附属病院 ヒト粘膜ワクチン学部門 特任教授
東京大学 医科学研究所 特任教授
アラバマ大学バーミングハム校 歯学部 小児歯科学講座 名誉教授
学位
博士(歯学)(1994年11月 大阪大学)

J-GLOBAL ID
201801016607667154
researchmap会員ID
B000313269

研究キーワード

 4

論文

 220
  • Yoshikazu Yuki, Shiho Kurokawa, Kotomi Sugiura, Koji Kashima, Shinichi Maruyama, Tomoyuki Yamanoue, Ayaka Honma, Mio Mejima, Natsumi Takeyama, Masaharu Kuroda, Hiroko Kozuka-Hata, Masaaki Oyama, Takehiro Masumura, Rika Nakahashi-Ouchida, Kohtaro Fujihashi, Takashi Hiraizumi, Eiji Goto, Hiroshi Kiyono
    Frontiers in Plant Science 15 2024年3月15日  
    We previously established the selection-marker-free rice-based oral cholera vaccine (MucoRice-CTB) line 51A for human use by Agrobacterium-mediated co-transformation and conducted a double-blind, randomized, placebo-controlled phase I trial in Japan and the United States. Although MucoRice-CTB 51A was acceptably safe and well tolerated by healthy Japanese and U.S. subjects and induced CTB-specific antibodies neutralizing cholera toxin secreted by Vibrio cholerae, we were limited to a 6-g cohort in the U.S. trial because of insufficient production of MucoRice-CTB. Since MucoRice-CTB 51A did not grow in sunlight, we re-examined the previously established marker-free lines and selected MucoRice-CTB line 19A. Southern blot analysis of line 19A showed a single copy of the CTB gene. We resequenced the whole genome and detected the transgene in an intergenic region in chromosome 1. After establishing a master seed bank of MucoRice-CTB line 19A, we established a hydroponic production facility with LED lighting to reduce electricity consumption and to increase production capacity for clinical trials. Shotgun MS/MS proteomics analysis of MucoRice-CTB 19A showed low levels of α-amylase/trypsin inhibitor-like proteins (major rice allergens), which was consistent with the data for line 51A. We also demonstrated that MucoRice-CTB 19A had high oral immunogenicity and induced protective immunity against cholera toxin challenge in mice. These results indicate that MucoRice-CTB 19A is a suitable oral cholera vaccine candidate for Phase I and II clinical trials in humans, including a V. cholerae challenge study.
  • Yoshikazu Yuki, Norihiro Harada, Shin-Ichi Sawada, Yohei Uchida, Rika Nakahashi-Ouchida, Hiromi Mori, Tomoyuki Yamanoue, Tomonori Machita, Masakatsu Kanazawa, Dai Fukumoto, Hiroyuki Ohba, Takashi Miyazaki, Kazunari Akiyoshi, Kohtaro Fujihashi, Hiroshi Kiyono
    Vaccine 41(34) 4941-4949 2023年7月31日  
    Cationic cholesteryl-group-bearing pullulan nanogel (cCHP-nanogel) is an effective drug-delivery system for nasal vaccines. However, cCHP-nanogel-based nasal vaccines might access the central nervous system due to its close proximity via the olfactory bulb in the nasal cavity. Using real-time quantitative tracking of the nanogel-based nasal botulinum neurotoxin and pneumococcal vaccines, we previously confirmed the lack of deposition of vaccine antigen in the cerebrum or olfactory bulbs of mice and non-human primates (NHPs), rhesus macaques. Here, we used positron emission tomography to investigate the biodistribution of the drug-delivery system itself, cCHP-nanogel after mice and NHPs were nasally administered with 18F-labeled cCHP nanogel. The results generated by the PET analysis of rhesus macaques were consistent with the direct counting of radioactivity due to 18F or 111In in dissected mouse tissues. Thus, no depositions of cCHP-nanogel were noted in the cerebrum, olfactory bulbs, or eyes of both species after nasal administration of the radiolabeled cCHP-nanogel compound. Our findings confirm the safe biodistribution of the cCHP-nanogel-based nasal vaccine delivery system in mice and NHPs.
  • Shingo Umemoto, Rika Nakahashi-Ouchida, Yoshikazu Yuki, Shiho Kurokawa, Tomonori Machita, Yohei Uchida, Hiromi Mori, Tomoyuki Yamanoue, Takehiko Shibata, Shin-Ichi Sawada, Kazuya Ishige, Takashi Hirano, Kohtaro Fujihashi, Kazunari Akiyoshi, Yosuke Kurashima, Daisuke Tokuhara, Peter B Ernst, Masashi Suzuki, Hiroshi Kiyono
    NPJ vaccines 8(1) 106-106 2023年7月24日  
    Respiratory syncytial virus (RSV) is a leading cause of upper and lower respiratory tract infection, especially in children and the elderly. Various vaccines containing the major transmembrane surface proteins of RSV (proteins F and G) have been tested; however, they have either afforded inadequate protection or are associated with the risk of vaccine-enhanced disease (VED). Recently, F protein-based maternal immunization and vaccines for elderly patients have shown promising results in phase III clinical trials, however, these vaccines have been administered by injection. Here, we examined the potential of using the ectodomain of small hydrophobic protein (SHe), also an RSV transmembrane surface protein, as a nasal vaccine antigen. A vaccine was formulated using our previously developed cationic cholesteryl-group-bearing pullulan nanogel as the delivery system, and SHe was linked in triplicate to pneumococcal surface protein A as a carrier protein. Nasal immunization of mice and cotton rats induced both SHe-specific serum IgG and mucosal IgA antibodies, preventing viral invasion in both the upper and lower respiratory tracts without inducing VED. Moreover, nasal immunization induced greater protective immunity against RSV in the upper respiratory tract than did systemic immunization, suggesting a critical role for mucosal RSV-specific IgA responses in viral elimination at the airway epithelium. Thus, our nasal vaccine induced effective protection against RSV infection in the airway mucosa and is therefore a promising vaccine candidate for further development.
  • Catherine J Y Tsai, Jacelyn M S Loh, Kohtaro Fujihashi, Hiroshi Kiyono
    Expert review of vaccines 22(1) 885-899 2023年  
    INTRODUCTION: The unique mucosal immune system allows the generation of robust protective immune responses at the front line of pathogen encounters. The needle-free delivery route and cold chain-free logistic requirements also provide additional advantages in ease and economy. However, the development of mucosal vaccines faces several challenges, and only a handful of mucosal vaccines are currently licensed. These vaccines are all in the form of live attenuated or inactivated whole organisms, whereas no subunit-based mucosal vaccine is available. AREAS COVERED: The selection of antigen, delivery vehicle, route and adjuvants for mucosal vaccination are highly important. This is particularly crucial for subunit vaccines, as they often fail to elicit strong immune responses. Emerging research is providing new insights into the biological and immunological uniqueness of mucosal tissues. However, many aspects of the mucosal immunology still await to be investigated. EXPERT OPINION: This article provides an overview of the current understanding of mucosal vaccination and discusses the remaining knowledge gaps. We emphasize that because of the potential benefits mucosal vaccines can bring from the biomedical, social and economic standpoints, the unmet goal to achieve mucosal vaccine success is worth the effort.

MISC

 176

書籍等出版物

 33

担当経験のある科目(授業)

 3

共同研究・競争的資金等の研究課題

 18

産業財産権

 1