先進科学センター

大里 健

オオサト ケン  (Ken Osato)

基本情報

所属
千葉大学 先進科学センター 助教
(兼任)大学院理学研究院 物理学研究部門 助教
学位
博士(理学)(2019年3月 東京大学)
修士(理学)(2016年3月 東京大学)

研究者番号
00914277
ORCID ID
 https://orcid.org/0000-0002-7934-2569
J-GLOBAL ID
202101012137702608
researchmap会員ID
R000025251

研究キーワード

 2

学歴

 2

受賞

 1

論文

 55
  • Gabriela A Marques, Jia Liu, Masato Shirasaki, Leander Thiele, Daniela Grandón, Kevin M Huffenberger, Sihao Cheng, Joachim Harnois-Déraps, Ken Osato, William R Coulton
    Monthly Notices of the Royal Astronomical Society 528(3) 4513-4527 2024年1月10日  
    ABSTRACT We present cosmological constraints derived from peak counts, minimum counts, and the angular power spectrum of the Subaru Hyper Suprime-Cam first-year (HSC Y1) weak lensing shear catalogue. Weak lensing peak and minimum counts contain non-Gaussian information and hence are complementary to the conventional two-point statistics in constraining cosmology. In this work, we forward-model the three summary statistics and their dependence on cosmology, using a suite of N-body simulations tailored to the HSC Y1 data. We investigate systematic and astrophysical effects including intrinsic alignments, baryon feedback, multiplicative bias, and photometric redshift uncertainties. We mitigate the impact of these systematics by applying cuts on angular scales, smoothing scales, signal-to-noise ratio bins, and tomographic redshift bins. By combining peaks, minima, and the power spectrum, assuming a flat-ΛCDM model, we obtain $S_{8} \equiv \sigma _8\sqrt{\Omega _m/0.3}= 0.810^{+0.022}_{-0.026}$, a 35 per cent tighter constraint than that obtained from the angular power spectrum alone. Our results are in agreement with other studies using HSC weak lensing shear data, as well as with Planck 2018 cosmology and recent CMB lensing constraints from the Atacama Cosmology Telescope and the South Pole Telescope.
  • Takumi Shimasue, Ken Osato, Masamune Oguri, Rhythm Shimakawa, Atsushi J. Nishizawa
    Monthly Notices of the Royal Astronomical Society 527(3) 5974-5987 2024年1月1日  
    We perform the weak lensing mass mapping analysis to identify troughs, which are defined as local minima in the mass map. Since weak lensing probes the projected matter distribution along the line of sight, these troughs can be produced by single or multiple voids projected along the line of sight. To scrutinize the origins of the weak lensing troughs, we systematically investigate the line-of-sight structure of troughs selected from the latest Subaru Hyper Suprime-Cam (HSC) Year 3 weak lensing data covering 433.48 deg2. From a curved sky mass map constructed with the HSC data, we identify 15 troughs with the signal-to-noise ratio higher than 5.7 and address their line-of-sight density structure utilizing redshift distributions of two galaxy samples, photometric luminous red galaxies observed by HSC and spectroscopic galaxies detected by Baryon Oscillation Spectroscopic Survey. While most weak lensing signals due to the troughs are explained by multiple voids aligned along the line of sight, we find that two of the 15 troughs potentially originate from single voids at redshift ∼0.3. The single void interpretation appears to be consistent with our three-dimensional mass mapping analysis. We argue that single voids can indeed reproduce observed weak lensing signals at the troughs if these voids are not spherical but are highly elongated along the line-of-sight direction.
  • Ken Osato, Nishimichi, Takahiro, Atsushi Taruya, Bernardeau, Francis
    Phys.Rev.D 108(12) 123541-123541 2023年12月15日  
  • Hironao Miyatake, Sunao Sugiyama, Masahiro Takada, Takahiro Nishimichi, Xiangchong Li, Masato Shirasaki, Surhud More, Yosuke Kobayashi, Atsushi J. Nishizawa, Markus M. Rau, Tianqing Zhang, Ryuichi Takahashi, Roohi Dalal, Rachel Mandelbaum, Michael A. Strauss, Takashi Hamana, Masamune Oguri, Ken Osato, Wentao Luo, Arun Kannawadi, Bau Ching Hsieh, Robert Armstrong, James Bosch, Yutaka Komiyama, Robert H. Lupton, Nate B. Lust, Lauren A. Macarthur, Satoshi Miyazaki, Hitoshi Murayama, Yuki Okura, Paul A. Price, Tomomi Sunayama, Philip J. Tait, Masayuki Tanaka, Shiang Yu Wang
    Physical Review D 108(12) 2023年12月15日  
    We present cosmology results from a blinded joint analysis of cosmic shear, ζ±, galaxy-galaxy weak lensing, Δς(R), and projected galaxy clustering, wp(R), measured from the Hyper Suprime-Cam three-year (HSC-Y3) shape catalog and the Sloan Digital Sky Survey (SDSS) DR11 spectroscopic galaxy catalog - a 3×2 pt cosmology analysis. We define luminosity-cut, and therefore nearly volume-limited, samples of SDSS galaxies to serve as the tracers of wp and as the lens samples for Δς in three spectroscopic redshift bins spanning the range 0.15<z<0.7. For the ζ± and Δς measurements, we use a single sample of about seven million source galaxies over 416 deg2, selected from HSC-Y3 based on having photometric redshifts (photo-z) greater than 0.75. The deep, high-quality HSC-Y3 data enable significant detections of the Δς signals, with integrated signal-to-noise ratio S/N∼24 in the range 3≤R/[h-1 Mpc]≤30 over the three lens samples. ζ± has S/N∼19 in the range 8′≤ ≤50′ and 30′≤ ≤150′ for ζ+ and ζ-, respectively. For cosmological parameter inference, we use the dark emulator package, combined with a halo occupation distribution prescription for the relation between galaxies and halos, to model wp and Δς down to quasinonlinear scales, and we estimate cosmological parameters after marginalizing over nuisance parameters. In our baseline analysis we employ an uninformative flat prior of the residual photo-z error, given by Π(Δzph)=U(-1,1), to model a residual bias in the mean redshift of HSC source galaxies. Comparing the relative lensing amplitudes for Δς in the three redshift bins and for ζ± with the single HSC source galaxy sample allows us to calibrate the photo-z parameter Δzph to the precision of σ(Δzph)≃0.09. With these methods, we obtain a robust constraint on the cosmological parameters for the flat ΛCDM model: S8=σ8(ωm/0.3)0.5=0.763-0.036+0.040, or the best-constrained parameter given by S8′=σ8(ωm/0.3)0.22=0.721±0.028, determined with about 4% fractional precision. Based on multidimensional tension metrics, HSC-Y3 data exhibits about 2.5σ tension with the cosmological constraint inferred by Planck for the ΛCDM model, and hints at a nonzero residual photo-z bias implying that the true mean redshift of the HSC galaxies at z≳0.75 is higher than that implied by the original photo-z estimates.
  • Roohi Dalal, Xiangchong Li, Andrina Nicola, Joe Zuntz, Michael A. Strauss, Sunao Sugiyama, Tianqing Zhang, Markus M. Rau, Rachel Mandelbaum, Masahiro Takada, Surhud More, Hironao Miyatake, Arun Kannawadi, Masato Shirasaki, Takanori Taniguchi, Ryuichi Takahashi, Ken Osato, Takashi Hamana, Masamune Oguri, Atsushi J. Nishizawa, Andrés A.Plazas Malagón, Tomomi Sunayama, David Alonso, Anže Slosar, Wentao Luo, Robert Armstrong, James Bosch, Bau Ching Hsieh, Yutaka Komiyama, Robert H. Lupton, Nate B. Lust, Lauren A. Macarthur, Satoshi Miyazaki, Hitoshi Murayama, Takahiro Nishimichi, Yuki Okura, Paul A. Price, Philip J. Tait, Masayuki Tanaka, Shiang Yu Wang
    Physical Review D 108(12) 2023年12月15日  
    We measure weak lensing cosmic shear power spectra from the 3-year galaxy shear catalog of the Hyper Suprime-Cam (HSC) Subaru Strategic Program imaging survey. The shear catalog covers 416 deg2 of the northern sky, with a mean i-band seeing of 0.59 arcsec and an effective galaxy number density of 15 arcmin-2 within our adopted redshift range. With an i-band magnitude limit of 24.5 mag, and four tomographic redshift bins spanning 0.3≤zph≤1.5 based on photometric redshifts, we obtain a high-significance measurement of the cosmic shear power spectra, with a signal-to-noise ratio of approximately 26.4 in the multipole range 300<ℓ<1800. The accuracy of our power spectrum measurement is tested against realistic mock shear catalogs, and we use these catalogs to get a reliable measurement of the covariance of the power spectrum measurements. We use a robust blinding procedure to avoid confirmation bias, and model various uncertainties and sources of bias in our analysis, including point spread function systematics, redshift distribution uncertainties, the intrinsic alignment of galaxies and the modeling of the matter power spectrum. For a flat ΛCDM model, we find S8σ8(ωm/0.3)0.5=0.776-0.033+0.032, which is in excellent agreement with the constraints from the other HSC Year 3 cosmology analyses, as well as those from a number of other cosmic shear experiments. This result implies a ∼2σ-level tension with the Planck 2018 cosmology. We study the effect that various systematic errors and modeling choices could have on this value, and find that they can shift the best-fit value of S8 by no more than ∼0.5σ, indicating that our result is robust to such systematics.

書籍等出版物

 2

講演・口頭発表等

 45

担当経験のある科目(授業)

 9

所属学協会

 6

共同研究・競争的資金等の研究課題

 4