研究者業績

中西 未央

Mio Nakanishi

基本情報

所属
千葉大学 大学院医学研究院 先端研究部門 イノベーション治療学研究講座 講師
学位
博士(学術)(東京大学)

連絡先
mnakanishichiba-u.jp
研究者番号
70534353
ORCID ID
 https://orcid.org/0009-0001-6970-5258
J-GLOBAL ID
201601020461726571
researchmap会員ID
B000256317

外部リンク

千葉大学大学院 医学研究院所属の幹細胞研究者です。2023年に独立した研究チームを立ち上げ、幹細胞の「再生」と「老化」を二大テーマとして研究と教育にあたっています

現在の研究トピック

  1. 造血幹前駆細胞の自己組織化ダイナミクス変容による老化の理解と制御
  2. 幹前駆細胞をコアとした組織再生プロセスの解明と制御
  3. 造血オルガノイドをもちいた発生・再生時の組織成熟化メカニズムの理解と制御

これまでの主な研究成果

  1. オルガノイド形成による試験管内での三次元膵臓組織の構築:Differentiation 2007、FASEB Journal 2009
  2. 膵臓外分泌細胞から内分泌細胞への生体内直接リプログラミング:Elife 2014、Nat Biotechnol 2014
  3. 1細胞解析による幹細胞ダイナミクスの統合的理解:Nat Cell Biol 2017、Cell 2019、Cell Chem Biol 2023、 Science Immunology 2024

 


委員歴

 3

主要な論文

 21
  • Yukiteru Nakayama, Katsuhito Fujiu, Tsukasa Oshima, Jun Matsuda, Junichi Sugita, Takumi James Matsubara, Yuxiang Liu, Kohsaku Goto, Kunihiro Kani, Ryoko Uchida, Norifumi Takeda, Hiroyuki Morita, Yingda Xiao, Michiko Hayashi, Yujin Maru, Eriko Hasumi, Toshiya Kojima, Soh Ishiguro, Yusuke Kijima, Nozomu Yachie, Satoshi Yamazaki, Ryo Yamamoto, Fujimi Kudo, Mio Nakanishi, Atsushi Iwama, Ryoji Fujiki, Atsushi Kaneda, Osamu Ohara, Ryozo Nagai, Ichiro Manabe, Issei Komuro
    Science immunology 9(95) eade3814 2024年5月24日  
    Patients with heart failure (HF) often experience repeated acute decompensation and develop comorbidities such as chronic kidney disease and frailty syndrome. Although this suggests pathological interaction among comorbidities, the mechanisms linking them are poorly understood. Here, we identified alterations in hematopoietic stem cells (HSCs) as a critical driver of recurrent HF and associated comorbidities. Bone marrow transplantation from HF-experienced mice resulted in spontaneous cardiac dysfunction and fibrosis in recipient mice, as well as increased vulnerability to kidney and skeletal muscle insults. HF enhanced the capacity of HSCs to generate proinflammatory macrophages. In HF mice, global chromatin accessibility analysis and single-cell RNA-seq showed that transforming growth factor-β (TGF-β) signaling was suppressed in HSCs, which corresponded with repressed sympathetic nervous activity in bone marrow. Transplantation of bone marrow from mice in which TGF-β signaling was inhibited similarly exacerbated cardiac dysfunction. Collectively, these results suggest that cardiac stress modulates the epigenome of HSCs, which in turn alters their capacity to generate cardiac macrophage subpopulations. This change in HSCs may be a common driver of repeated HF events and comorbidity by serving as a key carrier of "stress memory."
  • Yuriko Yoneda, Hisaya Kato, Yoshiro Maezawa, Koutaro Yokote, Mio Nakanishi
    Biophysics and Physicobiology 2024年  
  • Luca Orlando, Yannick D Benoit, Jennifer C Reid, Mio Nakanishi, Allison L Boyd, Juan L García-Rodriguez, Borko Tanasijevic, Meaghan S Doyle, Artee Luchman, Ian J Restall, Christopher J Bergin, Angelique N Masibag, Lili Aslostovar, Justin Di Lu, Sarah Laronde, Tony J Collins, Samuel Weiss, Mickie Bhatia
    Cell chemical biology 2023年6月16日  
    Overlapping principles of embryonic and tumor biology have been described, with recent multi-omics campaigns uncovering shared molecular profiles between human pluripotent stem cells (hPSCs) and adult tumors. Here, using a chemical genomic approach, we provide biological evidence that early germ layer fate decisions of hPSCs reveal targets of human cancers. Single-cell deconstruction of hPSCs-defined subsets that share transcriptional patterns with transformed adult tissues. Chemical screening using a unique germ layer specification assay for hPSCs identified drugs that enriched for compounds that selectively suppressed the growth of patient-derived tumors corresponding exclusively to their germ layer origin. Transcriptional response of hPSCs to germ layer inducing drugs could be used to identify targets capable of regulating hPSC specification as well as inhibiting adult tumors. Our study demonstrates properties of adult tumors converge with hPSCs drug induced differentiation in a germ layer specific manner, thereby expanding our understanding of cancer stemness and pluripotency.
  • Mio Nakanishi, Ryan R. Mitchell, Yannick D. Benoit, Luca Orlando, Jennifer C. Reid, Kenichi Shimada, Kathryn C. Davidson, Zoya Shapovalova, Tony J. Collins, Andras Nagy, Mickie Bhatia
    Cell 177(4) 910-924.e22 2019年5月  
  • Allison L. Boyd, Jennifer C. Reid, Kyle R. Salci, Lili Aslostovar, Yannick D. Benoit, Zoya Shapovalova, Mio Nakanishi, Deanna P. Porras, Mohammed Almakadi, Clinton J. V. Campbell, Michael F. Jackson, Catherine A. Ross, Ronan Foley, Brian Leber, David S. Allan, Mitchell Sabloff, Anargyros Xenocostas, Tony J. Collins, Mickie Bhatia
    NATURE CELL BIOLOGY 19(11) 1336-+ 2017年11月  査読有り
    Acute myeloid leukaemia (AML) is distinguished by the generation of dysfunctional leukaemic blasts, and patients characteristically suffer from fatal infections and anaemia due to insufficient normal myelo-erythropoiesis. Direct physical crowding of bone marrow (BM) by accumulating leukaemic cells does not fully account for this haematopoietic failure. Here, analyses from AML patients were applied to both in vitro co-culture platforms and in vivo xenograft modelling, revealing that human AML disease specifically disrupts the adipocytic niche in BM. Leukaemic suppression of BM adipocytes led to imbalanced regulation of endogenous haematopoietic stem and progenitor cells, resulting in impaired myelo-erythroid maturation. In vivo administration of PPAR gamma agonists induced BM adipogenesis, which rescued healthy haematopoietic maturation while repressing leukaemic growth. Our study identifies a previously unappreciated axis between BM adipogenesis and normal myelo-erythroid maturation that is therapeutically accessible to improve symptoms of BM failure in AML via non-cell autonomous targeting of the niche.
  • Weida Li, Claudia Cavelti-Weder, Yinying Zhang, Kendell Clement, Scott Donovan, Gabriel Gonzalez, Jiang Zhu, Marianne Stemann, Ke Xu, Tatsu Hashimoto, Takatsugu Yamada, Mio Nakanishi, Yuemei Zhang, Samuel Zeng, David Gifford, Alexander Meissner, Gordon Weir, Qiao Zhou
    NATURE BIOTECHNOLOGY 32(12) 1223-U79 2014年12月  査読有り
    Direct lineage conversion is a promising approach to generate therapeutically important cell types for disease modeling and tissue repair. However, the survival and function of lineage-reprogrammed cells in vivo over the long term has not been examined. Here, using an improved method for in vivo conversion of adult mouse pancreatic acinar cells toward beta cells, we show that induced beta cells persist for up to 13 months (the length of the experiment), form pancreatic islet-like structures and support normoglycemia in diabetic mice. Detailed molecular analyses of induced beta cells over 7 months reveal that global DNA methylation changes occur within 10 d, whereas the transcriptional network evolves over 2 months to resemble that of endogenous beta cells and remains stable thereafter. Progressive gain of beta-cell function occurs over 7 months, as measured by glucose-regulated insulin release and suppression of hyperglycemia. These studies demonstrate that lineage-reprogrammed cells persist for > 1 year and undergo epigenetic, transcriptional, anatomical and functional development toward a beta-cell phenotype.
  • Li, W., Nakanishi, M., Zumsteg, A., Shear, M., Wright, C., Melton, D.A., Zhou, Q.
    eLife 2014(3) e01846 2014年1月  査読有り

MISC

 2

書籍等出版物

 2

講演・口頭発表等

 22

共同研究・競争的資金等の研究課題

 7

産業財産権

 2