大学院理学研究院

水谷 健二

ミズタニ ケンジ  (Kenji Mizutani)

基本情報

所属
千葉大学 大学院理学研究院 主任URA
学位
博士(理学)(横浜市立大学)

研究者番号
10525570
J-GLOBAL ID
201601019789365047
researchmap会員ID
7000017942

横浜市立大学大学院総合理学研究科博士後期課程修了(2007年)博士(理学)。ERATO岩田プロジェクト技術補助。インペリアルカレッジロンドン、リサーチアソシエート。京都大学大学院医学研究科産官学連携研究員(分子細胞情報学)。東京理科大学基礎工学部ポストドクトラル研究員。千葉大学大学院理学研究科(化学コース)特任研究員、同特任助教、横浜市立大学生命医科学研究科助教、千葉大学大学院理学研究院主任URA


委員歴

 1

論文

 30
  • Thao Tu, Tharangani Rathnayaka, Toshiyo Kato, Kenji Mizutani, Tomonori Saotome, Keiichi Noguchi, Shun-Ichi Kidokoro, Yutaka Kuroda
    International journal of molecular sciences 25(7) 2024年4月1日  
    Refolding multi-disulfide bonded proteins expressed in E. coli into their native structure is challenging. Nevertheless, because of its cost-effectiveness, handiness, and versatility, the E. coli expression of viral envelope proteins, such as the RBD (Receptor-Binding Domain) of the influenza Hemagglutinin protein, could significantly advance research on viral infections. Here, we show that H1N1-PR8-RBD (27 kDa, containing four cysteines forming two disulfide bonds) expressed in E. coli and was purified with nickel affinity chromatography, and reversed-phase HPLC was successfully refolded into its native structure, as assessed with several biophysical and biochemical techniques. Analytical ultracentrifugation indicated that H1N1-PR8-RBD was monomeric with a hydrodynamic radius of 2.5 nm. Thermal denaturation, monitored with DSC and CD at a wavelength of 222 nm, was cooperative with a midpoint temperature around 55 °C, strongly indicating a natively folded protein. In addition, the 15N-HSQC NMR spectrum exhibited several 1H-15N resonances indicative of a beta-sheeted protein. Our results indicate that a significant amount (40 mg/L) of pure and native H1N1-PR8-RBD can be produced using an E. coli expression system with our refolding procedure, offering potential insights into the molecular characterization of influenza virus infection.
  • Kenta Arai, Masaki Okumura, Young-Ho Lee, Hidekazu Katayama, Kenji Mizutani, Yuxi Lin, Sam-Yong Park, Kaichiro Sawada, Masao Toyoda, Hironobu Hojo, Kenji Inaba, Michio Iwaoka
    Communications chemistry 6(1) 258-258 2023年11月21日  
    Seleno-insulin, a class of artificial insulin analogs, in which one of the three disulfide-bonds (S-S's) of wild-type insulin (Ins) is replaced by a diselenide-bond (Se-Se), is attracting attention for its unique chemical and physiological properties that differ from those of Ins. Previously, we pioneered the development of a [C7UA,C7UB] analog of bovine pancreatic insulin (SeIns) as the first example, and demonstrated its high resistance against insulin-degrading enzyme (IDE). In this study, the conditions for the synthesis of SeIns via native chain assembly (NCA) were optimized to attain a maximum yield of 72%, which is comparable to the in vitro folding efficiency for single-chain proinsulin. When the resistance of BPIns to IDE was evaluated in the presence of SeIns, the degradation rate of BPIns became significantly slower than that of BPIns alone. Furthermore, the investigation on the intermolecular association properties of SeIns and BPIns using analytical ultracentrifugation suggested that SeIns readily forms oligomers not only with its own but also with BPIns. The hypoglycemic effect of SeIns on diabetic rats was observed at a dose of 150 μg/300 g rat. The strategy of replacing the solvent-exposed S-S with Se-Se provides new guidance for the design of long-acting insulin formulations.
  • Naito Ishimoto, Jae-Hyun Park, Kouki Kawakami, Michiko Tajiri, Kenji Mizutani, Satoko Akashi, Jeremy R H Tame, Asuka Inoue, Sam-Yong Park
    Nature communications 14(1) 4107-4107 2023年7月11日  査読有り
    Neutrophil granulocytes play key roles in innate immunity and shaping adaptive immune responses. They are attracted by chemokines to sites of infection and tissue damage, where they kill and phagocytose bacteria. The chemokine CXCL8 (also known as interleukin-8, abbreviated IL-8) and its G-protein-coupled receptors CXCR1 and CXCR2 are crucial elements in this process, and also the development of many cancers. These GPCRs have therefore been the target of many drug development campaigns and structural studies. Here, we solve the structure of CXCR1 complexed with CXCL8 and cognate G-proteins using cryo-EM, showing the detailed interactions between the receptor, the chemokine and Gαi protein. Unlike the closely related CXCR2, CXCR1 strongly prefers to bind CXCL8 in its monomeric form. The model shows that steric clashes would form between dimeric CXCL8 and extracellular loop 2 (ECL2) of CXCR1. Consistently, transplanting ECL2 of CXCR2 onto CXCR1 abolishes the selectivity for the monomeric chemokine. Our model and functional analysis of various CXCR1 mutants will assist efforts in structure-based drug design targeting specific CXC chemokine receptor subtypes.
  • Rawiwan Wongnak, Subbaian Brindha, Takahiro Yoshizue, Sawaros Onchaiya, Kenji Mizutani, Yutaka Kuroda
    Biophysics and physicobiology 20(4) e200036 2023年  
    Low-cost bacterial production of the receptor binding domain (RBD) of the SARS-CoV-2 Omicron spike protein holds significant potential in expediting the development of therapeutics against COVID-19. However, RBD contains eight cysteines forming four disulfide bonds, and expression in E. coli using standard protocols produces insoluble RBD forming non-native disulfide bonds. Here, we expressed RBD in E. coli T7 SHuffle with high aeration, which enhanced disulfide formation in the cytoplasm and reshuffling of non-native disulfide bonds, and at a low temperature of 16°C, which stabilized the native conformation and thus the formation of the native disulfide bonds. The yield of RBD was as high as 3 mg per 200 mL culture. We analyzed the conformational and biophysical properties of our E. coli-expressed RBD. First, the RP-HPLC elution profile indicated a single peak, suggesting that RBD was folded with a single disulfide bond pairing pattern. Next, circular dichroism analysis indicated a secondary structure content very close to that computed from the crystal structure. RBD's thermal denaturation monitored by CD was cooperative, strongly indicating a well-folded protein structure. Moreover, limited proteolysis showed that RBD was nearly as stable as RNase A, and the formation of native disulfide bonds was confirmed by LC-MS analysis. Furthermore, BLI analysis indicated a strong binding of RBD with the hACE2 with a dissociation constant of 0.83 nM, confirming the folded nature of RBD. Altogether, these results demonstrate that our E. coli-expression system can provide a large amount of highly purified RBD with correct disulfide bonds and native-like biochemical and biophysical properties.
  • Jae-Hyun Park, Masashi Iwamoto, Ji-Hye Yun, Tomomi Uchikubo-Kamo, Donghwan Son, Zeyu Jin, Hisashi Yoshida, Mio Ohki, Naito Ishimoto, Kenji Mizutani, Mizuki Oshima, Masamichi Muramatsu, Takaji Wakita, Mikako Shirouzu, Kehong Liu, Tomoko Uemura, Norimichi Nomura, So Iwata, Koichi Watashi, Jeremy R H Tame, Tomohiro Nishizawa, Weontae Lee, Sam-Yong Park
    Nature 606(7916) 1027-1031 2022年5月17日  査読有り
    Roughly 250 million people are infected with hepatitis B virus (HBV) worldwide1, and perhaps 15 million also carry the satellite virus HDV, which confers even greater risk of severe liver disease2. Almost ten years ago the HBV receptor was identified as NTCP (sodium taurocholate co-transporting polypeptide), which interacts directly with the first 48 amino acid residues of the N-myristoylated N-terminal preS1 domain of the viral large (L) protein3. Despite the pressing need for therapeutic agents to counter HBV, the structure of NTCP remains unsolved. This 349-residue protein is closely related to human apical sodium-dependent bile acid transporter (ASBT), another member of the solute carrier family SLC10. Crystal structures have been reported of similar bile acid transporters from bacteria4, 5, and these models with ten transmembrane helices are believed to resemble strongly both NTCP and ASBT. Using cryo-electron microscopy we have solved the structure of NTCP bound to an antibody, clearly showing the transporter has no equivalent to the first transmembrane helix of other SLC10 models, leaving the N-terminus exposed on the extracellular face. Comparison of the different structures indicates a common mechanism of bile acid transport, but the NTCP structure also displays a pocket formed by residues known to interact with preS1, presenting new and enticing opportunities for structure-based drug design.

MISC

 6

書籍等出版物

 2

共同研究・競争的資金等の研究課題

 3

産業財産権

 1

メディア報道

 1