研究者業績

大坪 紀之

オオツボ ノリユキ  (Noriyuki OTSUBO)

基本情報

所属
千葉大学 大学院理学研究院 数学・情報数理学研究部門 代数講座 教授
学位
博士(数理科学)(2000年3月 東京大学)
修士(数理科学)(1997年3月 東京大学)

研究者番号
60332566
ORCID ID
 https://orcid.org/0000-0002-7880-0505
J-GLOBAL ID
200901043640215460
researchmap会員ID
1000357242

外部リンク

委員歴

 2

論文

 18
  • Masanori Asakura, Noriyuki Otsubo
    arXiv:2408.08012 2024年8月  
  • Noriyuki Otsubo, Takao Yamazaki
    arXiv:2402.06072 2024年2月  
  • Noriyuki Otsubo
    The Ramanujan Journal 63(1) 55-104 2024年1月  査読有り
  • Noriyuki Otsubo, Takato Senoue
    Research in Number Theory 8(4) 1-12 2022年12月  査読有り
  • Noriyuki Otsubo
    The Ramanujan Journal 55(2) 793-816 2021年6月24日  査読有り
  • Masanori Asakura, Noriyuki Otsubo
    "Arithmetic L-Functions and Differential Geometric Methods", Progress in Math. 338 1-30 2021年5月  査読有り招待有り
  • Masanori Asakura, Noriyuki Otsubo, Tomohide Terasoma
    Nagoya Math. J. 236 47-62 2019年  査読有り招待有り
  • Masanori Asakura, Noriyuki Otsubo
    Nagoya Math. J. 236 29-46 2019年  査読有り招待有り
  • Masanori Asakura, Noriyuki Otsubo
    Canad. J. Math. 70 481-514 2018年  査読有り
  • Masanori Asakura, Noriyuki Otsubo
    Math. Z. 289 1325-1355 2018年  査読有り
  • Noriyuki Otsubo
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES 59(3) 624-640 2016年9月  査読有り
    We give a precise description of the homology group of the Fermat curve as a cyclic module over a group ring. As an application, we prove the freeness of the profinite homology of the Fermat tower. This allows us to define measures, an equivalent of Anderson's adelic beta functions, in a manner similar to Ihara's definition of l-adic universal power series for Jacobi sums. We give a simple proof of the interpolation property using a motivic decomposition of the Fermat curve.
  • Noriyuki Otsubo
    EXPERIMENTAL MATHEMATICS 24(2) 247-259 2015年  査読有り
    For motives associated with Fermat curves, there are elements in motivic cohomology whose regulators are written in terms of special values of generalized hypergeometric functions. Using them, we verify the Beilinson conjecture numerically for some cases and find formulas for the values of L-functions at 0. These appear analogous to the Chowla-Selberg formula for the periods of elliptic curves with complex multiplication, which are related to the L-values at 1 by the Birch-Swinnerton-Dyer conjecture.
  • Noriyuki Otsubo
    MATHEMATISCHE ZEITSCHRIFT 270(1-2) 423-444 2012年2月  査読有り
    We study the Abel-Jacobi image of the Ceresa cycle W(k) - W(k)(-), where W(k) is the image of the kth symmetric product of a curve X on its Jacobian variety. For the Fermat curve of degree N, we express it in terms of special values of generalized hypergeometric functions and give a criterion for the non-vanishing of W(k) - W(k)(-) modulo algebraic equivalence, which is verified numerically for some N and k.
  • Noriyuki Otsubo
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK 660 27-82 2011年11月  査読有り
    We calculate the Beilinson regulator of motives associated to Fermat curves and express them by special values of generalized hypergeometric functions. As a result, we obtain surjectivity results of the regulator, which support the Beilinson conjecture on special values of L-functions.
  • Noriyuki Otsubo
    JOURNAL OF NUMBER THEORY 131(4) 648-660 2011年4月  査読有り
    We compare two calculations due to Bloch and the author of the regulator of an elliptic curve with complex multiplication which is a quotient of a Fermat curve, and express the special value of its L-function at s = 0 in terms of special values of generalized hypergeometric functions. (C) 2010 Elsevier Inc. All rights reserved.
  • Noriyuki Otsubo
    Advanced Studies of Pure Math. 30 313-323 2001年  査読有り招待有り
  • N Otsubo
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK 525 113-146 2000年8月  査読有り
    We show the finiteness of the p-primary torsion part of the Chow group of zero-cycles on the Fermat quartic surface F over Q and Q(root-1) for p X 6. Proving this, we also compute the (positive) Z(p)-corank of the Selmer groups associated to H-2(F)(2), and construct integral elements in K-1, which are in correspondence with conjectures of Beilinson and Bloch-Kato.
  • N Otsubo
    MANUSCRIPTA MATHEMATICA 101(1) 115-124 2000年1月  査読有り
    Conjecures of Beilinson and Bloch-Kato describe the order of zeros of L-functions of motives in terms of motivic cohomology groups and Selmer groups. We restrict our attention to the parts generated by the cycle classes, and give modest evidence for the conjectures.

MISC

 7

書籍等出版物

 2

講演・口頭発表等

 21

担当経験のある科目(授業)

 12

所属学協会

 1

共同研究・競争的資金等の研究課題

 16

社会貢献活動

 5