研究者業績

磯部 遼太郎

イソベ リョウタロウ  (Ryotaro Isobe)

基本情報

所属
千葉大学 教育学部 助教
学位
博士(理学)(2020年3月 千葉大学)

研究者番号
50897882
ORCID ID
 https://orcid.org/0000-0002-4139-0610
J-GLOBAL ID
202001002787946630
researchmap会員ID
R000010084

外部リンク

研究キーワード

 1

論文

 10
  • Ryotaro Isobe, Shinya Kumashiro
    Taiwanese Journal of Mathematics 28(5) 865-875 2024年10月  査読有り
    We provide a certain direct-sum decomposition of reflexive modules over (one-dimensional) Arf local rings. We also see the equivalence of three notions, say, integrally closed ideals, trace ideals, and reflexive modules of rank one (i.e., divisorial ideals) up to isomorphisms in Arf rings. As an application, we obtain the finiteness of indecomposable reflexive modules, up to isomorphism, for analytically irreducible Arf local rings.
  • Ryotaro Isobe
    Journal of Pure and Applied Algebra 2024年9月  査読有り
  • Ryotaro Isobe
    Journal of Commutative Algebra 15(3) 2023年9月1日  査読有り
  • Ela Celikbas, Olgur Celikbas, Cătălin Ciupercă, Naoki Endo, Shiro Goto, Ryotaro Isobe, Naoyuki Matsuoka
    Journal of Commutative Algebra 15(2) 2023年6月1日  査読有り
  • Naoki Endo, Shiro Goto, Ryotaro Isobe
    RESEARCH IN THE MATHEMATICAL SCIENCES 8(4) 2021年12月  査読有り
    In 1971, Lipman (Am J Math 93:649-685, 1971) introduced the notion of strict closure of a ring in another, and established the underlying theory in connection with a conjecture of O. Zariski. In this paper, for further developments of the theory, we investigate three different topics related to strict closure of rings. The first one concerns construction of the closure, and the second one is the study regarding the question of whether the strict closedness is inherited under flat homomorphisms. We finally handle the question of when the Arf closure coincides with the strict closure. Examples are explored to illustrate our theorems.

MISC

 2
  • Ryotaro Isobe, Shinya Kumashiro
    2021年5月15日  
    In this paper, we provide a certain direct-sum decomposition of reflexive modules over (one-dimensional) Arf local rings. We also see the equivalence of three notions, say, integrally closed ideals, trace ideals, and reflexive modules of rank one (i.e., divisorial ideals) up to isomorphisms in Arf rings. As an application, we obtain the finiteness of indecomposable first syzygies of MCM $R$-modules over Arf local rings.
  • Shiro Goto, Ryotaro Isobe, Shinya Kumashiro, Naoki Taniguchi
    2017年4月28日  
    The notion of generalized Gorenstein local ring (GGL ring for short) is one of the generalizations of Gorenstein rings. In this article, there is given a characterization of GGL rings in terms of their canonical ideals and related invariants.

講演・口頭発表等

 32

共同研究・競争的資金等の研究課題

 2