大学院薬学研究院

伊藤 晃成

イトウ コウセイ  (Kousei Ito)

基本情報

所属
千葉大学 大学院薬学研究院生物薬剤学研究室 教授
学位
博士(薬学)(2000年3月 東京大学)

研究者番号
30323405
J-GLOBAL ID
200901049936074577
researchmap会員ID
1000306561

外部リンク

研究キーワード

 2

学歴

 3

論文

 127
  • Zhiheng Zhang, Haruna Aoki, Keitaro Umezawa, Joshua Kranrod, Natsumi Miyazaki, Taichi Oshima, Takuya Hirao, Yuri Miura, John Seubert, Kousei Ito, Shigeki Aoki
    Cell Death Discovery 10(1) 2024年4月5日  
    Abstract Although increased aerobic glycolysis is common in various cancers, pancreatic ductal adenocarcinoma (PDAC) cells can survive a state of glycolysis suppression. We aimed to identify potential therapeutic targets in glycolysis-suppressed PDAC cells. By screening anticancer metabolic compounds, we identified SP-2509, an inhibitor of lysine-specific histone demethylase 1A (LSD1), which dramatically decreased the growth of PDAC PANC-1 cells and showed an anti-tumoral effect in tumor-bearing mice. The growth of glycolysis-suppressed PANC-1 cells was also inhibited by another LSD1 inhibitor, OG-L002. Similarly, the other two PDAC cells (PK-1 and KLM-1) with suppressed glycolysis exhibited anticancer effects against SP-2509. However, the anticancer effects on PDAC cells were unrelated to LSD1. To investigate how PDAC cells survive in a glycolysis-suppressed condition, we conducted proteomic analyses. These results combined with our previous findings suggested that glucose-starvation causes PDAC cells to enhance mitochondrial oxidative phosphorylation. In particular, mitochondrial fatty acid metabolism was identified as a key factor contributing to the survival of PDAC cells under glycolysis suppression. We further demonstrated that SP-2509 and OG-L002 disturbed fatty acid metabolism and induced lipid droplet accumulation through the impairment of lipophagy, but not bulk autophagy. These findings indicate a significant potential association of lipophagy and anticancer effects in glycolysis-suppressed PDAC cells, offering ideas for new therapeutic strategies for PDAC by dual inhibition of glycolysis and fatty acids metabolism.
  • Akira Kazaoka, Sota Fujimori, Yushiro Yamada, Tomohiro Shirayanagi, Yuying Gao, Saki Kuwahara, Naoki Sakamoto, Takeshi Susukida, Shigeki Aoki, Kousei Ito
    PNAS Nexus 2024年3月28日  
  • Akira Kazaoka, Kazuyoshi Kumagai, Junya Matsushita, Tetsuo Aida, Saki Kuwahara, Shigeki Aoki, Kousei Ito
    Toxicological Research 2024年1月6日  
    Abstract Several patients with cutaneous adverse drug reactions exhibit extracutaneous organ damages, and it becomes severe in a few patients resulting in death due to multiorgan failure. Understanding the sequential changes in various organs in patients with cutaneous eruption following drug administration will help understand disease onset and progression, aiding the development of prevention strategies and interventions. Therefore, we aimed to understand the effects of abacavir (ABC) on various organs in patients with ABC-induced eruptions by evaluating its effects in a mouse model. We found pathological changes in various organs of HLA-B*57:01 transgenic mice (B*57:01-Tg) following oral administration of ABC (20 mg/body/day). B*57:01-Tg exhibited a significant body weight decrease from day 1 of ABC administration, and reddening of the auricle was observed from day 5, and approximately 2/3 mice died by day 7. Histopathological examination revealed severe thymic atrophy after day 3, infiltration of inflammatory cells, predominantly lymphocytes with neutrophils, not only in the skin but also in the liver, kidney, and lung after day 5, and an increased number of lymphocytes with enlarged nuclei and granulocytic hematopoiesis were observed in the spleen after day 5. Blood chemistry revealed that albumin/globulin ratio was below 1.0 on day 5, reflecting a systemic inflammatory response, and the aspartate aminotransferase concentration rose to 193 ± 93.0 U/L on day 7, suggesting that cell damage may have occurred in various organs including liver accompanying inflammatory cell infiltration. These examinations of a mouse model of ABC-induced skin eruption show that disorders in various organs other than the skin should be considered and provide insights into the unexpected early systemic responses dependent on HLA-B*57:01.
  • Ryoichi Fujiwara, Megan Journey, Fatimah Al-Doori, Paris Bell, Brahmjot Judge, Kamille Miracle, Kousei Ito, Sabrina Jones
    Pharmacology & therapeutics 248 108468-108468 2023年8月  
    Cannabis, cocaine, 3,4-methylenedioxymethamphetamine, and lysergic acid diethylamide are psychoactive substances with a significant increase in consumption during the 21st century due to their popularity in medicinal and recreational use. New psychoactive substances (NPSs) mimic established psychoactive substances. NPSs are known as being natural and safe to consumers; however, they are neither natural nor safe, causing severe adverse reactions, including seizures, nephrotoxicity, and sometimes death. Synthetic cannabinoids, synthetic cathinones, phenethylamines, and piperazines are all examples of NPSs. As of January 2020, nearly 1000 NPSs have become documented. Due to their low cost, ease of availability, and difficulty of detection, misuse of NPSs has become a familiar and growing problem, especially in adolescents and young adults in the past decade. The use of NPSs is associated with higher risks of unplanned sexual intercourse and pregnancy. As many as 4 in 100 women seeking treatment for substance abuse are pregnant or nursing. Animal studies and human clinical case reports have shown that exposure to certain NPSs during lactation periods has toxic effects on neonates, increasing various risks, including brain damage. Nevertheless, neonatal toxicity effects of NPSs are usually unrecognized and overlooked by healthcare professionals. In this review article, we introduce and discuss the potential neonatal toxicity of NPSs, emphasizing synthetic cannabinoids. Utilizing the established prediction models, we identify synthetic cannabinoids and their highly accumulative metabolites in breast milk.
  • Takeshi Susukida, So-Ichiro Sasaki, Tomohiro Shirayanagi, Shigeki Aoki, Kousei Ito, Yoshihiro Hayakawa
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 165 115241-115241 2023年7月29日  
    Anti-human immunodeficiency virus (HIV) drug abacavir (ABC) binds to the specific allele of human leukocyte antigen (HLA-B*57:01) and activates CD8+ T cells by presenting altered abnormal peptides. Here, we examined the effect of ABC-induced altered self-presentation by HLA-B*57:01 on immunogenicity of cancer cells and CD8+ T-cell-dependent anti-tumor immunity. We established human-mouse chimeric HLA-B*57:01-expressing tumor cell lines (B16F10 and 3LL) and tested the anti-tumor effect of ABC in vivo. ABC treatment inhibited the growth of HLA-B*57:01-expressing tumors by a CD8+ T-cell-dependent mechanism. ABC treatment induced CXCR3-dependent infiltration of CD8+ T cells into HLA-B*57:01-expressing tumors, and activated those tumor-infiltrating CD8+ T cells to proliferate and secrete IFN-γ. The activation of CD8+ T cells using drug-induced altered self-presentation may be a new strategy to increase tumor immunogenicity and improve the efficacy of immunotherapy.

MISC

 325

書籍等出版物

 1

講演・口頭発表等

 30

所属学協会

 7

共同研究・競争的資金等の研究課題

 26

産業財産権

 3