研究者業績

樋口 篤志

ヒグチ アツシ  (Atsushi Higuchi)

基本情報

所属
千葉大学 環境リモートセンシング研究センター 教授
学位
博士(理学,筑波大学)

J-GLOBAL ID
200901048529047054
researchmap会員ID
1000321146

外部リンク

論文

 59
  • Wei LI, Kazuhito ICHII, Beichen ZHANG, Yuhei YAMAMOTO, Wei YANG, Tomoaki MIURA, Hiroki YOSHIOKA, Masayuki MATSUOKA, Kenta OBATA, Ram C. SHARMA, Hirokazu YAMAMOTO, Hitoshi IRIE, Pradeep KHATRI, Ben LILEY, Isamu MORINO, Hideaki TAKENAKA, Atsushi HIGUCHI
    Journal of the Meteorological Society of Japan. Ser. II 2025年  
  • Kalingga Titon Nur Ihsan, Anjar Dimara Sakti, Atsushi Higuchi, Hideaki Takenaka, Ketut Wikantika
    Energy and Buildings 114552-114552 2024年9月  査読有り
  • Kalingga Titon Nur Ihsan, Hideaki Takenaka, Atsushi Higuchi, Anjar Dimara Sakti, Ketut Wikantika
    Solar Energy 276 112678-112678 2024年7月  査読有り
  • Hisato Iwashita, Fumiaki Kobayashi, Kazuomi Morotomi, Shigeharu Shimamura, Atsushi Higuchi, Hiroyo Ohya, Toshiaki Takano, Tamio Takamura
    URSI Radio Science Letters 5 2024年4月  査読有り
  • Xu Ri, Husi Letu, Chong Shi, Takashi Y. Nakajima, Huazhe Shang, Fangling Bao, Bilige Sude, Higuchi Atsushi, Wei Yang, Ichii Kazuhito, Yonghui Lei, Jun Zhao, Jiancheng Shi
    IEEE Transactions on Geoscience and Remote Sensing 62 2024年  
    Large inaccuracies remain in the traditional convective cloud identification system over the plateau area struggles to capture mid- and low-level clouds due to the complex topographic effects influencing cloud pressure. Besides, the lack of efficient nighttime cloud-type products hinders progress in the research on the diurnal cycle and seasonal variation in convective clouds (including deep convection and cumulus clouds) over the Tibet Plateau (TP). In this study, we incorporated Shapley additive explanation (SHAP) tuning into the fundamental machine learning CatBoost Classifier technology, which was applied to a 24-h convective cloud detection algorithm utilizing cloud top temperature (CTT) and optical thickness data derived from the Himawari-8 infrared channels. This specifically tackles the problem of underestimating cumulus clouds in plateau areas. This innovative product enables capturing important processes of deep convection, especially for cumulus clouds, facilitating a comprehensive spatial-temporal analysis of the entire TP region. The results confirm that the new algorithm shows significant improvements in cumulus detection compared to the official cloud product of Himawari-8. In addition, the deep convective clouds have also improved from 35.85% to 63.05% for hit rate (HR) value. The analysis reveals a notable diurnal variation in convective cloud activity over the TP, predominantly occurring from noon to night. This finding underscores the influential heating role of the TP in convective activity.

MISC

 24

共同研究・競争的資金等の研究課題

 15