真菌医学研究センター

知花 博治

チバナ ヒロジ  (Hiroji Chibana)

基本情報

所属
千葉大学 真菌医学研究センター 准教授 (准教授)
学位
博士(医学)(名古屋大学)
Ph. D. of Medical Science

J-GLOBAL ID
200901052291283800
researchmap会員ID
5000004163

論文

 124
  • Michiyo Okamoto, Kaname Sasamoto, Azusa Takahashi-Nakaguchi, Zhao Fujiang, Masashi, Yamaguchi, Hiroji Chibana
    Medical Mycology Journal 2024年12月  査読有り
  • Tadashi Maruyama, Masashi Yamaguchi, Hiroji Chibana
    Cytologia 2024年12月  査読有り
  • Masashi Yamaguchi, Mayuko Sato, Azusa Takahashi-Nakaguchi, Michiyo Okamoto, Kiminori Toyooka, Hiroji Chibana
    Microscopy (Oxford, England) 2024年7月20日  査読有り
    Sandwich freezing is a method of rapid freezing by sandwiching specimens between two copper disks and has been used for observing exquisite close-to-native ultrastructure of living yeast and bacteria. Recently, this method has been found to be useful for preserving cell images of glutaraldehyde-fixed cultured cells, as well as animal and human tissues. In the present study, this method was applied to observe the fine structure of living Arabidopsis plant tissues and was found to achieve excellent ultrastructural preservation of cells and tissues. This is the first report of applying the sandwich freezing method to observe plant tissues.
  • Lin M, Huang Y, Orihara K, Chibana H, Kajiwara S, Chen X
    Journal of fungi (Basel, Switzerland) 2023年12月  査読有り
  • Keiko Nakano, Michiyo Okamoto, Azusa Takahashi-Nakaguchi, Kaname Sasamoto, Masashi Yamaguchi, Hiroji Chibana
    Journal of fungi (Basel, Switzerland) 9(10) 2023年10月  査読有り
    With only four classes of antifungal drugs available for the treatment of invasive systemic fungal infections, the number of resistant fungi is increasing, highlighting the urgent need for novel antifungal drugs. Ergosterol, an essential component of cell membranes, and its synthetic pathway have been targeted for antifungal drug development. Sterol-C4-methyl monooxygenase (Erg25p), which is a greater essential target than that of existing drugs, represents a promising drug target. However, the development of antifungal drugs must consider potential side effects, emphasizing the importance of evaluating their selective toxicity against fungi. In this study, we knocked in ERG25 of Candida glabrata and its human ortholog, SC4MOL, in ERG25-deleted Saccharomyces cerevisiae. Utilizing these strains, we evaluated 1181-0519, an Erg25p inhibitor, that exhibited selective toxicity against the C. glabrata ERG25 knock-in strain. Furthermore, 1181-0519 demonstrated broad-spectrum antifungal activity against pathogenic Candida species, including Candida auris. The approach of utilizing a gene that is functionally conserved between yeast and humans and subsequently screening for molecular target drugs enables the identification of selective inhibitors for both species.

MISC

 275

共同研究・競争的資金等の研究課題

 27