真菌医学研究センター

知花 博治

チバナ ヒロジ  (Hiroji Chibana)

基本情報

所属
千葉大学 真菌医学研究センター 准教授 (准教授)
学位
博士(医学)(名古屋大学)
Ph. D. of Medical Science

J-GLOBAL ID
200901052291283800
researchmap会員ID
5000004163

論文

 124
  • Masashi Yamaguchi, Mayuko Sato, Azusa Takahashi-Nakaguchi, Michiyo Okamoto, Kiminori Toyooka, Hiroji Chibana
    Microscopy (Oxford, England) 2024年7月20日  査読有り
    Sandwich freezing is a method of rapid freezing by sandwiching specimens between two copper disks and has been used for observing exquisite close-to-native ultrastructure of living yeast and bacteria. Recently, this method has been found to be useful for preserving cell images of glutaraldehyde-fixed cultured cells, as well as animal and human tissues. In the present study, this method was applied to observe the fine structure of living Arabidopsis plant tissues and was found to achieve excellent ultrastructural preservation of cells and tissues. This is the first report of applying the sandwich freezing method to observe plant tissues.
  • Lin M, Huang Y, Orihara K, Chibana H, Kajiwara S, Chen X
    Journal of fungi (Basel, Switzerland) 2023年12月  査読有り
  • Keiko Nakano, Michiyo Okamoto, Azusa Takahashi-Nakaguchi, Kaname Sasamoto, Masashi Yamaguchi, Hiroji Chibana
    Journal of fungi (Basel, Switzerland) 9(10) 2023年10月  査読有り
    With only four classes of antifungal drugs available for the treatment of invasive systemic fungal infections, the number of resistant fungi is increasing, highlighting the urgent need for novel antifungal drugs. Ergosterol, an essential component of cell membranes, and its synthetic pathway have been targeted for antifungal drug development. Sterol-C4-methyl monooxygenase (Erg25p), which is a greater essential target than that of existing drugs, represents a promising drug target. However, the development of antifungal drugs must consider potential side effects, emphasizing the importance of evaluating their selective toxicity against fungi. In this study, we knocked in ERG25 of Candida glabrata and its human ortholog, SC4MOL, in ERG25-deleted Saccharomyces cerevisiae. Utilizing these strains, we evaluated 1181-0519, an Erg25p inhibitor, that exhibited selective toxicity against the C. glabrata ERG25 knock-in strain. Furthermore, 1181-0519 demonstrated broad-spectrum antifungal activity against pathogenic Candida species, including Candida auris. The approach of utilizing a gene that is functionally conserved between yeast and humans and subsequently screening for molecular target drugs enables the identification of selective inhibitors for both species.
  • Tadashi Maruyama, Masashi Yamaguchi, Akihiro Tame, Takashi Toyofuku, Hiroji Chibana, Manabu Yoshida
    CYTOLOGIA 2023年8月  査読有り
  • Takahiro Mochizuki, Toshiki Tanigawa, Seiya Shindo, Momoka Suematsu, Yuki Oguchi, Tetsuo Mioka, Yusuke Kato, Mina Fujiyama, Eri Hatano, Masashi Yamaguchi, Hiroji Chibana, Fumiyoshi Abe
    Molecular biology of the cell mbcE23030086 2023年6月28日  査読有り
    The fungal cell wall is the initial barrier for the fungi against diverse external stresses, such as osmolarity changes, harmful drugs, and mechanical injuries. This study explores the roles of osmoregulation and the cell wall integrity (CWI) pathway in response to high hydrostatic pressure in the yeast Saccharomyces cerevisiae. We demonstrate the roles of the transmembrane mechanosensor Wsc1 and aquaglyceroporin Fps1 in a general mechanism to maintain cell growth under high-pressure regimes. The promotion of water influx into cells at 25 MPa, as evident by an increase in cell volume and a loss of the plasma membrane eisosome structure, activates the CWI pathway through the function of Wsc1. Phosphorylation of Slt2, the downstream mitogen-activated protein kinase, was increased at 25 MPa. Glycerol efflux increases via Fps1 phosphorylation, which is initiated by downstream components of the CWI pathway, and contributes to the reduction in intracellular osmolarity under high pressure. The elucidation of the mechanisms underlying adaptation to high pressure through the well-established CWI pathway could potentially translate to mammalian cells and provide novel insights into cellular mechanosensation.

MISC

 275

共同研究・競争的資金等の研究課題

 26