大学院医学研究院

岩村 千秋

イワムラ チアキ  (Chiaki Iwamura)

基本情報

所属
千葉大学 大学院医学研究院国際アレルギー粘膜免疫学 特任講師
学位
博士(医学)(2008年3月)

研究者番号
10513062
J-GLOBAL ID
200901016799281394
researchmap会員ID
6000014482

研究キーワード

 3

学歴

 3

委員歴

 1

論文

 46
  • Tatsuya Kaneko, Chiaki Iwamura, Masahiro Kiuchi, Akane Kurosugi, Miki Onoue, Tomoaki Matsumura, Tetsuhiro Chiba, Toshinori Nakayama, Naoya Kato, Kiyoshi Hirahara
    Journal of Allergy and Clinical Immunology: Global 100287-100287 2024年6月  
  • Ami Aoki, Chiaki Iwamura, Masahiro Kiuchi, Kaori Tsuji, Atsushi Sasaki, Takahisa Hishiya, Rui Hirasawa, Kota Kokubo, Sachiko Kuriyama, Atsushi Onodera, Tadanaga Shimada, Tetsutaro Nagaoka, Satoru Ishikawa, Akira Kojima, Haruki Mito, Ryota Hase, Yasunori Kasahara, Naohide Kuriyama, Sukeyuki Nakamura, Takashi Urushibara, Satoru Kaneda, Seiichiro Sakao, Osamu Nishida, Kazuhisa Takahashi, Motoko Y. Kimura, Shinichiro Motohashi, Hidetoshi Igari, Yuzuru Ikehara, Hiroshi Nakajima, Takuji Suzuki, Hideki Hanaoka, Taka-aki Nakada, Toshiaki Kikuchi, Toshinori Nakayama, Koutaro Yokote, Kiyoshi Hirahara
    Journal of Clinical Immunology 44(4) 2024年4月22日  
    Abstract Purpose Auto-antibodies (auto-abs) to type I interferons (IFNs) have been identified in patients with life-threatening coronavirus disease 2019 (COVID-19), suggesting that the presence of auto-abs may be a risk factor for disease severity. We therefore investigated the mechanism underlying COVID-19 exacerbation induced by auto-abs to type I IFNs. Methods We evaluated plasma from 123 patients with COVID-19 to measure auto-abs to type I IFNs. We performed single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells from the patients with auto-abs and conducted epitope mapping of the auto-abs. Results Three of 19 severe and 4 of 42 critical COVID-19 patients had neutralizing auto-abs to type I IFNs. Patients with auto-abs to type I IFNs showed no characteristic clinical features. scRNA-seq from 38 patients with COVID-19 revealed that IFN signaling in conventional dendritic cells and canonical monocytes was attenuated, and SARS-CoV-2-specific BCR repertoires were decreased in patients with auto-abs. Furthermore, auto-abs to IFN-α2 from COVID-19 patients with auto-abs recognized characteristic epitopes of IFN-α2, which binds to the receptor. Conclusion Auto-abs to type I IFN found in COVID-19 patients inhibited IFN signaling in dendritic cells and monocytes by blocking the binding of type I IFN to its receptor. The failure to properly induce production of an antibody to SARS-CoV-2 may be a causative factor of COVID-19 severity.
  • Chiaki Iwamura, Hidetaka Ohnuki, Francis A Flomerfelt, Lixin Zheng, Alexie Carletti, Hidefumi Wakashin, Yohei Mikami, Stephen R Brooks, Yuka Kanno, Ronald E Gress, Giovanna Tosato, Toshinori Nakayama, John J O'Shea, Alan Sher, Dragana Jankovic
    Nature immunology 2023年11月13日  
    Aberrant differentiation of progenitor cells in the hematopoietic system is known to severely impact host immune responsiveness. Here we demonstrate that NOD1, a cytosolic innate sensor of bacterial peptidoglycan, also functions in murine hematopoietic cells as a major regulator of both the generation and differentiation of lymphoid progenitors as well as peripheral T lymphocyte homeostasis. We further show that NOD1 mediates these functions by facilitating STAT5 signaling downstream of hematopoietic cytokines. In steady-state, loss of NOD1 resulted in a modest but significant decrease in numbers of mature T, B and natural killer cells. During systemic protozoan infection this defect was markedly enhanced, leading to host mortality. Lack of functional NOD1 also impaired T cell-dependent anti-tumor immunity while preventing colitis. These findings reveal that, in addition to its classical role as a bacterial ligand receptor, NOD1 plays an important function in regulating adaptive immunity through interaction with a major host cytokine signaling pathway.
  • Atsushi Onodera, Kota Kokubo, Mikiko Okano, Miki Onoue, Masahiro Kiuchi, Chiaki Iwamura, Tomohisa Iinuma, Motoko Y. Kimura, Nobuyuki Ebihara, Toyoyuki Hanazawa, Toshinori Nakayama, Kiyoshi Hirahara
    Pharmacology & Therapeutics 247 108445-108445 2023年7月  査読有り
  • Kota Kokubo, Kiyoshi Hirahara, Masahiro Kiuchi, Kaori Tsuji, Yuki Shimada, Yuri Sonobe, Rie Shinmi, Takahisa Hishiya, Chiaki Iwamura, Atsushi Onodera, Toshinori Nakayama
    Proceedings of the National Academy of Sciences of the United States of America 120(2) e2218345120 2023年1月10日  査読有り
    CD4+ memory T cells are central to long-lasting protective immunity and are involved in shaping the pathophysiology of chronic inflammation. While metabolic reprogramming is critical for the generation of memory T cells, the mechanisms controlling the redox metabolism in memory T cell formation remain unclear. We found that reactive oxygen species (ROS) metabolism changed dramatically in T helper-2 (Th2) cells during the contraction phase in the process of memory T cell formation. Thioredoxin-interacting protein (Txnip), a regulator of oxidoreductase, regulated apoptosis by scavenging ROS via the nuclear factor erythroid 2-related factor 2 (Nrf2)-biliverdin reductase B (Blvrb) pathway. Txnip regulated the pathology of chronic airway inflammation in the lung by controlling the generation of allergen-specific pathogenic memory Th2 cells in vivo. Thus, the Txnip-Nrf2-Blvrb axis directs ROS metabolic reprogramming in Th2 cells and is a potential therapeutic target for intractable chronic inflammatory diseases.

MISC

 21

書籍等出版物

 4

講演・口頭発表等

 12

所属学協会

 2

共同研究・競争的資金等の研究課題

 10

産業財産権

 4