研究者業績

髙橋 秀幸

タカハシ ヒデユキ  (Hideyuki Takahashi)

基本情報

所属
千葉大学 大学院園芸学研究院 宇宙園芸研究センター 特任教授 (センター長)
学位
農学博士(東北大学)

J-GLOBAL ID
200901097313047719
researchmap会員ID
1000004350

外部リンク

受賞

 7

論文

 153
  • Lei Pang, Akie Kobayashi, Yuka Atsumi, Yutaka Miyazawa, Nobuharu Fujii, Daniela Dietrich, Malcolm J Bennett, Hideyuki Takahashi
    Journal of Experimental Botany 2023年5月23日  査読有り
    Abstract In response to unilateral blue light illumination, roots of some plant species such as Arabidopsis thaliana exhibit negative phototropism (bending away from light), which is important for light avoidance in nature. MIZU-KUSSEI1 (MIZ1) and GNOM/MIZ2 are essential for positive hydrotropism (i.e. in the presence of a moisture gradient, root bending towards greater water availability). Intriguingly, mutations in these genes also cause a substantial reduction in phototropism. Here, we examined whether the same tissue-specific sites of expression required for MIZ1- and GNOM/MIZ2-regulated hydrotropism in Arabidopsis roots are also required for phototropism. The attenuated phototropic response of miz1 roots was completely restored when a functional MIZ1–green fluorescent protein (GFP) fusion was expressed in the cortex of the root elongation zone but not in other tissues such as root cap, meristem, epidermis, or endodermis. The hydrotropic defect and reduced phototropism of miz2 roots were restored by GNOM/MIZ2 expression in either the epidermis, cortex, or stele, but not in the root cap or endodermis. Thus, the sites in root tissues that are involved in the regulation of MIZ1- and GNOM/MIZ2-dependent hydrotropism also regulate phototropism. These results suggest that MIZ1- and GNOM/MIZ2-mediated pathways are, at least in part, shared by hydrotropic and phototropic responses in Arabidopsis roots.
  • Boyuan Mao, Hiroki Takahashi, Hideyuki Takahashi, Nobuharu Fujii
    Journal of Plant Research 135(6) 799-808 2022年9月23日  査読有り
    Abstract Root gravitropism affects root hydrotropism. The interference intensity of root gravitropism with root hydrotropism differs among plant species. However, these differences have not been well compared within a single plant species. In this study, we compared root hydrotropism in various natural variants of Arabidopsis under stationary conditions. As a result, we detected a range of root hydrotropism under stationary conditions among natural Arabidopsis variants. Comparison of root gravitropism and root hydrotropism among several Arabidopsis natural variants classified natural variants that decreased root hydrotropism into two types; namely one type that expresses root gravitropism and root hydrotropism weaker than Col-0, and the other type that expresses weaker root hydrotropism than Col-0 but expresses similar root gravitropism with Col-0. However, root hydrotropism of all examined Arabidopsis natural variants was facilitated by clinorotation. These results suggested that the interference of root gravitropism with root hydrotropism is conserved among Arabidopsis natural variants, although the intensity of root gravitropism interference with root hydrotropism differs.
  • Miyazawa Y, Takahashi H
    Journal of Plant Research 2019年12月4日  査読有り招待有り
  • Tanaka-Takada N, Kobayashi A, Takahashi H, Kamiya T, Kinoshita T, Maeshima M
    Plant, Cell and Physiology 60(6) DOI: 10.1093/pcp/pcz042/536909-1341 2019年  査読有り
  • Kobayashi A, Kim H-J, Tomita Y, Miyazawa Y, Fujii N, Yano S, Yamazaki C, Kamada M, Kasahara H, Miyabayashi S, Shimazu T, Fusejima Y, Takahashi H
    Physiologia Plantarum 165 464-475 2019年  査読有り

MISC

 81

書籍等出版物

 19

講演・口頭発表等

 6

共同研究・競争的資金等の研究課題

 17

社会貢献活動

 2

メディア報道

 4

その他

 4
  • 2005年5月 - 2005年5月
    本研究では、微小重力下で根の水分屈性と重力屈性を分離し、水分屈性に対する重力屈性の干渉作用を検証し、それぞれの場合のオーキシン制御遺伝子の発現変化をオーキシン動態として捉え、両屈性におけるオーキシンの役割からそれぞれのメカニズムを明らかにするとともに、微小重力下における根の伸長方向を水分屈性により制御することを可能にするための宇宙実験を実施することを目的としている。
  • 2004年10月 - 2004年10月
    本研究では、キュウリの重力形態形成を実験系として重力応答制御分子を同定するとともに、根の重力屈性が水分屈性と相互作用する仕組みや、重力依存的成長現象の分子機構を解明するためのモデルを構築することを目的とした。
  • 2004年4月 - 2004年4月
    植物は重力をシグナルとして利用し、とくに陸地環境における生存に必要な形態、姿勢、伸長方向の制御を可能にした。この植物の重力応答(受容)の仕組みを理解することは、生物学的課題であるだけでなく、人類の生命維持システムの保持および宇宙への生命圏の拡大のために、エネルギー源と環境を確保するという観点から極めて重要である。本研究班ワーキンググループ(WG)では、このような生物進化、地球環境、生命維持システム、有人宇宙活動、いずれの観点からもフロンティアの先端に立つ植物の生活を支える「重力受容システム」の解明に向けて、研究の現状と課題を整理し、地上研究に基づいて得られる仮説を検証すべく宇宙実験系を確立することを目的としている。