元木 誠, 濱上 知樹, 小圷 成一, 平田 廣則
電気学会論文誌. C, 電子・情報・システム部門誌 = The transactions of the Institute of Electrical Engineers of Japan. C, A publication of Electronics, Information and System Society 123(6) 1124-1133 2003年6月1日
In this paper, a Hebbian learning rule restraining “catastrophic forgetting” is proposed on pulse neural network (PNN) with leaky integrate-and-fire neurons. The strong point of this learning rule is that a learning of new pattern does not destroy past ones, and that an efficient use of synapses is enabled. First, in order to consider the function of the learning rule, a fundamental experiment is made. Next, to compare the performance between the proposed learning rule and conventional ones on the application, simulation experiments are examined using autonomous behavior robots which are forced to learn concurrently two different environments. The results of the experiments show that the proposed learning rule clearly restrains “catastrophic forgetting” and enables working of more efficient than conventional PNN learning.