研究者業績

高山 直也

Takayama Naoya  (Naoya Takayama)

基本情報

所属
千葉大学 大学院医学研究院 准教授

研究者番号
10584229
J-GLOBAL ID
201601019523177903
researchmap会員ID
B000261919

論文

 86
  • Kentaro Kosaka, Naoya Takayama, Sudip Kumar Paul, Maria Alejandra Kanashiro, Motohiko Oshima, Masaki Fukuyo, Bahityar Rahmutulla, Ikuko Tajiri, Michiaki Mukai, Yoshitaka Kubota, Shinsuke Akita, Nobutaka Furuyama, Atsushi Kaneda, Atsushi Iwama, Koji Eto, Nobuyuki Mitsukawa
    Stem Cell Research & Therapy 15(1) 2024年10月14日  
  • 新井 隆仁, 向井 務晃, 志賀 康浩, 高山 直也, 田代 奨, 井上 雅寛, 稲毛 一秀, 成田 都, 折田 純久, 江藤 浩之, 大鳥 精司
    日本整形外科学会雑誌 98(8) S1806-S1806 2024年9月  
  • 向井 務晃, 落合 信靖, 寺川 文英, 橋本 瑛子, 高山 直也, 志賀 康浩, 江藤 浩之, 大鳥 精司
    日本整形外科学会雑誌 98(8) S1808-S1808 2024年9月  
  • Sudip Kumar Paul, Motohiko Oshima, Ashwini Patil, Masamitsu Sone, Hisaya Kato, Yoshiro Maezawa, Hiyori Kaneko, Masaki Fukuyo, Bahityar Rahmutulla, Yasuo Ouchi, Kyoko Tsujimura, Mahito Nakanishi, Atsushi Kaneda, Atsushi Iwama, Koutaro Yokote, Koji Eto, Naoya Takayama
    Nature communications 15(1) 4772-4772 2024年6月10日  
    The underlying mechanisms of atherosclerosis, the second leading cause of death among Werner syndrome (WS) patients, are not fully understood. Here, we establish an in vitro co-culture system using macrophages (iMφs), vascular endothelial cells (iVECs), and vascular smooth muscle cells (iVSMCs) derived from induced pluripotent stem cells. In co-culture, WS-iMφs induces endothelial dysfunction in WS-iVECs and characteristics of the synthetic phenotype in WS-iVSMCs. Transcriptomics and open chromatin analysis reveal accelerated activation of type I interferon signaling and reduced chromatin accessibility of several transcriptional binding sites required for cellular homeostasis in WS-iMφs. Furthermore, the H3K9me3 levels show an inverse correlation with retrotransposable elements, and retrotransposable element-derived double-stranded RNA activates the DExH-box helicase 58 (DHX58)-dependent cytoplasmic RNA sensing pathway in WS-iMφs. Conversely, silencing type I interferon signaling in WS-iMφs rescues cell proliferation and suppresses cellular senescence and inflammation. These findings suggest that Mφ-specific inhibition of type I interferon signaling could be targeted to treat atherosclerosis in WS patients.
  • Takahito Arai, Yasuhiro Shiga, Michiaki Mukai, Naoya Takayama, Susumu Tashiro, Ikuko Tajiri, Kentaro Kosaka, Masashi Sato, Sou Nakamura, Haruki Okamoto, Seiji Kimura, Kazuhide Inage, Miyako Suzuki-Narita, Yawara Eguchi, Sumihisa Orita, Koji Eto, Seiji Ohtori
    Regenerative therapy 26 850-858 2024年6月  
    INTRODUCTION: Platelet-rich plasma obtained by centrifuging peripheral blood can promote osteogenesis owing to its abundant growth factors but has drawbacks, including rapid growth factor loss and inconsistent effects depending on donor factors. To overcome these issues, we were the first in the world to use freeze-dried human induced pluripotent stem cell-derived megakaryocytes and platelets (S-FD-iMPs) and found that they have osteogenesis-promoting effects. Since turbulence was found to activate platelet biogenesis and iPS cell-derived platelets can now be produced on a clinical scale by a device called VerMES, this study examined the osteogenesis-promoting effect and safety of clinical-scale FD-iMP (V-FD-iMPs) for future human clinical application. METHOD: We administered either S-FD-iMPs, V-FD-iMPs, or saline along with artificial bone to the lumbar spine of 8-week-old male Sprague-Dawley rats (n = 4 each) and evaluated bone formation by computed tomography (CT) and pathology. Next, we administered V-FD-iMPs or saline along with artificial bone to the lumber spines of 5-week-old male New Zealand White rabbits (n = 4 each) and evaluated the bone formation by CT and pathology. Rats (n = 10) and rabbits (n = 6) that received artificial bone and V-FD-iMPs in the lumbar spine were also observed for 6 months for adverse events, including infection, tumor formation, and death. RESULTS: Both V-FD-iMPs and S-FD-iMPs significantly enhanced osteogenesis in the lumber spines of rats in comparison with the controls 8 weeks postoperatively, with no significant differences between them. Furthermore, V-FD-iMPs vigorously promoted osteogenesis in the lumber spines of rabbits 8 weeks postoperatively. In rats and rabbits, V-FD-iMPs showed no adverse effects, including infection, tumor formation, and death, over 6 months. CONCLUSION: These results suggest that V-FD-iMPs promote safe osteogenesis.

MISC

 36

共同研究・競争的資金等の研究課題

 6