Journal of Advanced Computational Intelligence and Intelligent Informatics 28(2) 403-412 2024年3月20日
In recent years, inverse reinforcement learning has attracted attention as a method for estimating the intention of actions using the trajectories of various action-taking agents, including human flow data. In the context of reinforcement learning, “intention” refers to a reward function. Conventional inverse reinforcement learning assumes that all trajectories are generated from policies learned under a single reward function. However, it is natural to assume that people in a human flow act according to multiple policies. In this study, we introduce an expectation-maximization algorithm to inverse reinforcement learning, and propose a method to estimate different reward functions from the trajectories of human flow. The effectiveness of the proposed method was evaluated through a computer experiment based on human flow data collected from subjects around airport gates.
Journal of Advanced Computational Intelligence and Intelligent Informatics 28(2) 393-402 2024年3月20日
Sequential decision-making under multiple objective functions includes the problem of exhaustively searching for a Pareto-optimal policy and the problem of selecting a policy from the resulting set of Pareto-optimal policies based on the decision maker’s preferences. This paper focuses on the latter problem. In order to select a policy that reflects the decision maker’s preferences, it is necessary to order these policies, which is problematic because the decision-maker’s preferences are generally tacit knowledge. Furthermore, it is difficult to order them quantitatively. For this reason, conventional methods have mainly been used to elicit preferences through dialogue with decision-makers and through one-to-one comparisons. In contrast, this paper proposes a method based on inverse reinforcement learning to estimate the weight of each objective from the decision-making sequence. The estimated weights can be used to quantitatively evaluate the Pareto-optimal policies from the viewpoints of the decision-makers preferences. We applied the proposed method to the multi-objective reinforcement learning benchmark problem and verified its effectiveness as an elicitation method of weights for each objective function.