研究者業績

佐々 彰

Akira Sassa

基本情報

所属
千葉大学 大学院理学研究院 生物学研究部門 分子細胞生物学講座 准教授
厚生労働省 国立医薬品食品衛生研究所 協力研究員
学位
博士(生命科学)(2011年3月 東京薬科大学)

研究者番号
10738347
J-GLOBAL ID
201601020586495059
researchmap会員ID
B000254061

論文

 33
  • 佐々彰
    Bio Clinica 39(2) 81-83 2024年  招待有り
  • Weiying Liu, Manabu Yasui, Akira Sassa, Xinyue You, Jingjing Wan, Yiyi Cao, Jing Xi, Xinyu Zhang, Masamitsu Honma, Yang Luan
    Mutation research. Genetic toxicology and environmental mutagenesis 887 503608-503608 2023年4月  査読有り
    The fat mass and obesity-associated protein FTO is an "eraser" of N6-methyladenosine, the most abundant mRNA modification. FTO plays important roles in tumorigenesis. However, its activities have not been fully elucidated and its possible involvement in DNA damage - the early driving event in tumorigenesis - remains poorly characterized. Here, we have investigated the role of FTO in the DNA damage response (DDR) and its underlying mechanisms. We demonstrate that FTO responds to various DNA damage stimuli. FTO is overexpressed in mice following exposure to the promutagens aristolochic acid I and benzo[a]pyrene. Knockout of the FTO gene in TK6 cells, via CRISPR/Cas9, increased genotoxicity induced by DNA damage stimuli (micronucleus and TK mutation assays). Cisplatin- and diepoxybutane-induced micronucleus frequencies and methyl methanesulfonate- and azathioprine-induced TK mutant frequencies were also higher in FTO KO cells. We investigated the potential roles of FTO in DDR. RNA sequencing and enrichment analysis revealed that FTO deletion disrupted the p38 MAPK pathway and inhibited the activation of nucleotide excision repair and cell-cycle-related pathways following cisplatin (DNA intrastrand cross-links) treatment. These effects were confirmed by western blotting and qRT-PCR. FTO deletion impaired cell-cycle arrest at the G2/M phase following cisplatin and diepoxybutane treatment (flow cytometry analysis). Our findings demonstrated that FTO is involved in several aspects of DDR, acting, at least in part, by impairing cell cycle progression.
  • Naoki Koyama, Akira Sassa
    Genes and environment : the official journal of the Japanese Environmental Mutagen Society 45(1) 9-9 2023年3月9日  査読有り
    The Open Symposium of the Japanese Environmental Mutagen and Genome Society (JEMS) entitled "Analytical technologies to revolutionize the environmental mutagenesis and genome research -From the basics to the cutting-edge research-" was held online, on June 11th, 2022. The purpose of this symposium was to provide an opportunity to highlight the cutting-edge research for measurement technologies, and informational and computational (in silico) sciences for the purpose of applying them to deepen scientific knowledge and better understanding the relationship between genes and environmental mutagens. These advanced technologies and sciences are indispensable for the prediction of pharmacokineticses, mutagenicities of chemical substances, and structures of biomolecules including chromosomes. In this symposium, we invited six scientists who are continuing to expand the frontiers in the fields of health data science. Herein, the organizers present a summary of the symposium.
  • 佐々彰
    Bio Clinica 38(9) 71-73 2023年  招待有り
  • Natsu Katayama, Satoshi Koi, Akira Sassa, Tetsuya Kurata, Ryoko Imaichi, Masahiro Kato, Tomoaki Nishiyama
    Communications biology 5(1) 75-75 2022年1月20日  査読有り
    Molecular evolutionary rates vary among lineages and influence the evolutionary process. Here, we report elevated genome-wide mutation rates in Podostemaceae, a family of aquatic plants with a unique body plan that allows members to live on submerged rocks in fast-flowing rivers. Molecular evolutionary analyses using 1640 orthologous gene groups revealed two historical increases in evolutionary rates: the first at the emergence of the family and the second at the emergence of Podostemoideae, which is the most diversified subfamily. In both branches, synonymous substitution rates were elevated, indicating higher mutation rates. On early branches, mutations were biased in favour of AT content, which is consistent with a role for ultraviolet light-induced mutation and habitat shift. In ancestors of Podostemoideae, DNA-repair genes were enriched in genes under positive selection, which may have responded to the meristem architectural changes.
  • Joonas A Jamsen, Akira Sassa, Lalith Perera, David D Shock, William A Beard, Samuel H Wilson
    Nature communications 12(1) 5055-5055 2021年8月20日  査読有り
    Reactive oxygen species (ROS) oxidize cellular nucleotide pools and cause double strand breaks (DSBs). Non-homologous end-joining (NHEJ) attaches broken chromosomal ends together in mammalian cells. Ribonucleotide insertion by DNA polymerase (pol) μ prepares breaks for end-joining and this is required for successful NHEJ in vivo. We previously showed that pol μ lacks discrimination against oxidized dGTP (8-oxo-dGTP), that can lead to mutagenesis, cancer, aging and human disease. Here we reveal the structural basis for proficient oxidized ribonucleotide (8-oxo-rGTP) incorporation during DSB repair by pol μ. Time-lapse crystallography snapshots of structural intermediates during nucleotide insertion along with computational simulations reveal substrate, metal and side chain dynamics, that allow oxidized ribonucleotides to escape polymerase discrimination checkpoints. Abundant nucleotide pools, combined with inefficient sanitization and repair, implicate pol μ mediated oxidized ribonucleotide insertion as an emerging source of widespread persistent mutagenesis and genomic instability.
  • Akira Sassa, Takayuki Fukuda, Akiko Ukai, Maki Nakamura, Ryosuke Sato, Sho Fujiwara, Kouji Hirota, Shunichi Takeda, Kei-Ichi Sugiyama, Masamitsu Honma, Manabu Yasui
    Mutagenesis 2021年7月3日  査読有り
    Genotoxicity testing plays an important role in the safety assessment of pharmaceuticals, pesticides, and chemical substances. Among the guidelines for various genotoxicity tests, the in vitro genotoxicity test battery comprises the bacterial Ames test and mammalian cell assays. Several chemicals exhibit conflicting results for the bacterial Ames test and mammalian cell genotoxicity studies, which may stem from the differences in DNA repair capacity or metabolism, between different cell types or species. For better understanding the mechanistic implications regarding conflict outcomes between different assay systems, it is necessary to develop in vitro genotoxicity testing approaches with higher specificity towards DNA-damaging reagents. We have recently established an improved thymidine kinase (TK) gene mutation assay (TK assay) that is deficient in DNA excision repair system using human lymphoblastoid TK6 cells lacking XRCC1 and XPA (XRCC1 -/-/XPA -/-), the core factors of base excision repair and nucleotide excision repair, respectively. This DNA repair-deficient TK6 cell line is expected to specifically evaluate the genotoxic potential of chemical substances based on the DNA damage. We focused on four reagents, N-(1-naphthyl)ethylenediamine dihydrochloride (NEDA), p-phenylenediamine (PPD), auramine, and malachite green (MG) as the Ames test-positive chemicals. In our assay, assessment using XRCC1 -/-/XPA -/- cells revealed no statistically significant increase in the mutant frequencies after treatment with NEDA, PPD, and MG, suggesting the chemicals to be non-genotoxic in humans. The observations were consistent with that of the follow-up in vivo studies. In contrast, the mutant frequency was markedly increased in XRCC1 -/-/XPA -/- cells after treatment with auramine. The results suggest that auramine is the genotoxic reagent that preferentially induces DNA damages resolved by BER and/or NER in mammals. Taken together, BER/NER deficient cell-based genotoxicity testing will contribute to elucidate the mechanism of genotoxicity and therefore play a pivotal role in the accurate safety assessment of chemical substances.
  • Joonas A Jamsen, Akira Sassa, David D Shock, William A Beard, Samuel H Wilson
    Nature communications 12(1) 2059-2059 2021年4月6日  査読有り
    Oxidized dGTP (8-oxo-7,8-dihydro-2´-deoxyguanosine triphosphate, 8-oxodGTP) insertion by DNA polymerases strongly promotes cancer and human disease. How DNA polymerases discriminate against oxidized and undamaged nucleotides, especially in error-prone double strand break (DSB) repair, is poorly understood. High-resolution time-lapse X-ray crystallography snapshots of DSB repair polymerase μ undergoing DNA synthesis reveal that a third active site metal promotes insertion of oxidized and undamaged dGTP in the canonical anti-conformation opposite template cytosine. The product metal bridged O8 with product oxygens, and was not observed in the syn-conformation opposite template adenine (At). Rotation of At into the syn-conformation enabled undamaged dGTP misinsertion. Exploiting metal and substrate dynamics in a rigid active site allows 8-oxodGTP to circumvent polymerase fidelity safeguards to promote pro-mutagenic double strand break repair.
  • Tetsuya Suzuki, Akira Sassa, Petr Grúz, Ramesh C Gupta, Francis Johnson, Noritaka Adachi, Takehiko Nohmi
    DNA repair 100 103052-103052 2021年2月3日  査読有り
    DNA polymerase ζ (Pol ζ) is a specialized Pol that is involved in translesion DNA synthesis (TLS), in particular, in the extension of primer DNA after bypassing DNA lesions. Previously, we established human cells that express a variant form of Pol ζ with an amino acid change of leucine 2618 to methionine (L2618M) in the catalytic subunit REV3L (DNA Repair, 45, 34-43, 2016). This amino acid change made the cells more sensitive to the mutagenicity of benzo[a]pyrene diol epoxide (BPDE). In this study, we embedded BPDE-N2-guanine at a defined position in the supF gene on the shuttle plasmid and introduced it to REV3 L2618M cells or the wild-type (WT) cells to examine how far Pol ζ L2618M extends the primer DNA after bypassing the lesion. The adduct induced primarily G to T and G to C at the adducted site in both cell lines, but generated additional sequence changes such as base substitutions, deletions and additions in the extension patch much more often in REV3 L2618M cells than in the WT cells. Mutations in the extension patch in REV3 L2618M cells occurred most often within 10 bps from the adducted site. Then, the number of mutations gradually decreased and no mutations were observed between 30 and 40 bps from the lesion. We concluded that human Pol ζ L2618M and perhaps WT Pol ζ extend the primer DNA up to approximately 30 bps from the lesion in vivo. The possibility of involvement of Pol ζ L2618M in the insertion step of TLS is discussed.
  • Ayuna Takeishi, Hiroyuki Kogashi, Mizuki Odagiri, Hiroyuki Sasanuma, Shunichi Takeda, Manabu Yasui, Masamitsu Honma, Tetsuya Suzuki, Hiroyuki Kamiya, Kaoru Sugasawa, Kiyoe Ura, Akira Sassa
    PloS one 15(12) e0244790 2020年12月  査読有り最終著者責任著者
    Ribonucleoside triphosphates are often incorporated into genomic DNA during DNA replication. The accumulation of unrepaired ribonucleotides is associated with genomic instability, which is mediated by DNA topoisomerase 1 (Top1) processing of embedded ribonucleotides. The cleavage initiated by Top1 at the site of a ribonucleotide leads to the formation of a Top1-DNA cleavage complex (Top1cc), occasionally resulting in a DNA double-strand break (DSB). In humans, tyrosyl-DNA phosphodiesterases (TDPs) are essential repair enzymes that resolve the trapped Top1cc followed by downstream repair factors. However, there is limited cellular evidence of the involvement of TDPs in the processing of incorporated ribonucleotides in mammals. We assessed the role of TDPs in mutagenesis induced by a single ribonucleotide embedded into DNA. A supF shuttle vector site-specifically containing a single riboguanosine (rG) was introduced into the human lymphoblastoid TK6 cell line and its TDP1-, TDP2-, and TDP1/TDP2-deficient derivatives. TDP1 and TDP2 insufficiency remarkably decreased the mutant frequency caused by an embedded rG. The ratio of large deletion mutations induced by rG was also substantially lower in TDP1/TDP2-deficient cells than wild-type cells. Furthermore, the disruption of TDPs reduced the length of rG-mediated large deletion mutations. The recovery ratio of the propagated plasmid was also increased in TDP1/TDP2-deficient cells after the transfection of the shuttle vector containing rG. The results suggest that TDPs-mediated ribonucleotide processing cascade leads to unfavorable consequences, whereas in the absence of these repair factors, a more error-free processing pathway might function to suppress the ribonucleotide-induced mutagenesis. Furthermore, base substitution mutations at sites outside the position of rG were detected in the supF gene via a TDPs-independent mechanism. Overall, we provide new insights into the mechanism of mutagenesis induced by an embedded ribonucleotide in mammalian cells, which may lead to the fatal phenotype in the ribonucleotide excision repair deficiency.
  • Akira Sassa, Mizuki Odagiri
    DNA repair 93 102906-102906 2020年9月  査読有り招待有り
    8-Oxo-7,8-dihydroguanine (8-oxoG) is the major base damage in the genomic DNA by exposure to reactive oxygen species. Organisms have evolved various DNA repair mechanisms, such as base excision repair (BER) and nucleotide excision repair (NER), to protect the cellular genome from these mutagenic DNA lesions. The efficiency and capacity of BER and NER mechanisms can be modulated by the local sequence and structural contexts in which 8-oxoG is located. This graphical review summarizes the biochemical and structural studies that have provided insights into the impact of the microenvironment around the site of the lesion on oxidative DNA damage repair.
  • Sassa A, Tada H, Takeishi A, Harada K, Suzuki M, Tsuda M, Sasanuma H, Takeda S, Sugasawa K, Yasui M, Honma M, Ura K
    Scientific reports 9(1) 13910-13910 2019年9月26日  査読有り
  • Sassa A, Fukuda T, Ukai A, Nakamura M, Yasui MTakabe M, Takamura-Enya T, Honma M, Yasui M
    Genes and Environment 41(1) 15 2019年7月  査読有り
  • Sassa A, Yasui M, Honma M
    Genes and environment : the official journal of the Japanese Environmental Mutagen Society 41 3-3 2019年  査読有り招待有り
  • Yuki Kanemaru, Tetsuya Suzuki, Akira Sassa, Kyomu Matsumoto, Noritaka Adachi, Masamitsu Honma, Satoshi Numazawa, Takehiko Nohmi
    Genes and Environment 39(1) 6 2017年  査読有り
    Background: Interactions between genes and environment are critical factors for causing cancer in humans. The genotoxicity of environmental chemicals can be enhanced via the modulation of susceptible genes in host human cells. DNA polymerase kappa (Pol κ) is a specialized DNA polymerase that plays an important role in DNA damage tolerance through translesion DNA synthesis. To better understand the protective roles of Pol κ, we previously engineered two human cell lines either deficient in expression of Pol κ (KO) or expressing catalytically dead Pol κ (CD) in Nalm-6-MSH+ cells and examined cytotoxic sensitivity against various genotoxins. In this study, we set up several genotoxicity assays with cell lines possessing altered Pol κ activities and investigated the protective roles of Pol κ in terms of genotoxicity induced by mitomycin C (MMC), a therapeutic agent that induces bulky DNA adduct and crosslinks in DNA. Results: We introduced a frameshift mutation in one allele of the thymidine kinase (TK) gene of the KO, CD, and wild-type Pol κ cells (WT), thereby establishing cell lines for the TK gene mutation assay, namely TK+/- cells. In addition, we formulated experimental conditions to conduct chromosome aberration (CA) and sister chromatid exchange (SCE) assays with cells. By using the WT TK+/- and KO TK+/- cells, we assayed genotoxicity of MMC. In the TK gene mutation assay, the cytotoxic and mutagenic sensitivities of KO TK+/- cells were higher than those of WT TK+/- cells. MMC induced loss of heterozygosity (LOH), base pair substitutions at CpG sites and tandem mutations at GpG sites in both cell lines. However, the frequencies of LOH and base substitutions at CpG sites were significantly higher in KO TK+/-cells than in WT TK+/- cells. MMC also induced CA and SCE in both cell lines. The KO TK+/- cells displayed higher sensitivity than that displayed by WT TK+/- cells in the SCE assay. Conclusions: These results suggest that Pol κ is a modulating factor for the genotoxicity of MMC and also that the established cell lines are useful for evaluating the genotoxicity of chemicals from multiple endpoints in different genetic backgrounds of Pol κ.
  • Akira Sassa, Melike Caglayan, Yesenia Rodriguez, William A. Beard, Samuel H. Wilson, Takehiko Nohmi, Masamitsu Honma, Manabu Yasui
    JOURNAL OF BIOLOGICAL CHEMISTRY 291(46) 24314-24323 2016年11月  査読有り
    Numerous ribonucleotides are incorporated into the genome during DNA replication. Oxidized ribonucleotides can also be erroneously incorporated into DNA. Embedded ribonucleotides destabilize the structure of DNA and retard DNA synthesis by DNA polymerases (pols), leading to genomic instability. Mammalian cells possess translesion DNA synthesis (TLS) pols that bypass DNA damage. The mechanism of TLS and repair of oxidized ribonucleotides remains to be elucidated. To address this, we analyzed the miscoding properties of the ribonucleotides riboguanosine (rG) and 7,8-dihydro-8-oxo-riboguanosine (8-oxo-rG) during TLS catalyzed by the human TLS pols and in vitro. The primer extension reaction catalyzed by human replicative pol was strongly blocked by 8-oxo-rG. pol inefficiently bypassed rG and 8-oxo-rG compared with dG and 7,8-dihydro-8-oxo-2-deoxyguanosine (8-oxo-dG), whereas pol easily bypassed the ribonucleotides. pol exclusively inserted dAMP opposite 8-oxo-rG. Interestingly, pol preferentially inserted dCMP opposite 8-oxo-rG, whereas the insertion of dAMP was favored opposite 8-oxo-dG. In addition, pol accurately bypassed 8-oxo-rG. Furthermore, we examined the activity of the base excision repair (BER) enzymes 8-oxoguanine DNA glycosylase (OGG1) and apurinic/apyrimidinic endonuclease 1 on the substrates, including rG and 8-oxo-rG. Both BER enzymes were completely inactive against 8-oxo-rG in DNA. However, OGG1 suppressed 8-oxo-rG excision by RNase H2, which is involved in the removal of ribonucleotides from DNA. These results suggest that the different sugar backbones between 8-oxo-rG and 8-oxo-dG alter the capacity of TLS and repair of 8-oxoguanine.
  • Akira Sassa, Yuki Kanemaru, Nagisa Kamoshita, Masamitsu Honma, Manabu Yasui
    Genes and Environment 38(1) 17 2016年  査読有り
    Introduction: Cytosine residues in CpG dinucleotides often undergo various types of modification, such as methylation, deamination, and halogenation. These types of modifications can be pro-mutagenic and can contribute to the formation of mutational hotspots in cells. To analyze mutations induced by DNA modifications in the human genome, we recently developed a system for tracing DNA adducts in targeted mutagenesis (TATAM). In this system, a modified/damaged base is site-specifically introduced into intron 4 of thymidine kinase genes in human lymphoblastoid cells. To further the understanding of the mutagenesis of cytosine modification, we directly introduced different types of altered cytosine residues into the genome and investigated their genomic consequences using the TATAM system. Findings: In the genome, the pairing of thymine and 5-bromouracil with guanine, resulting from the deamination of 5-methylcytosine and 5-bromocytosine, respectively, was highly pro-mutagenic compared with the pairing of uracil with guanine, resulting from the deamination of cytosine residues. Conclusions: The deamination of 5-methylcytosine and 5-bromocytosine rather than that of normal cytosine dramatically enhances the mutagenic potential in the human genome.
  • Akira Sassa, Nagisa Kamoshita, Yuki Kanemaru, Masamitsu Honma, Manabu Yasui
    PLOS ONE 10(11) e0142218 2015年11月  査読有り
    Clustered DNA damage is defined as multiple sites of DNA damage within one or two helical turns of the duplex DNA. This complex damage is often formed by exposure of the genome to ionizing radiation and is difficult to repair. The mutagenic potential and repair mechanisms of clustered DNA damage in human cells remain to be elucidated. In this study, we investigated the involvement of nucleotide excision repair (NER) in clustered oxidative DNA adducts. To identify the in vivo protective roles of NER, we established a human cell line lacking the NER gene xeroderma pigmentosum group A (XPA). XPA knockout (KO) cells were generated from TSCER122 cells derived from the human lymphoblastoid TK6 cell line. To analyze the mutagenic events in DNA adducts in vivo, we previously employed a system of tracing DNA adducts in the targeted mutagenesis (TATAM), in which DNA adducts were sitespecifically introduced into intron 4 of thymidine kinase genes. Using the TATAM system, one or two tandem7,8-dihydro-8-oxoguanine (8-oxoG) adducts were introduced into the genomes of TSCER122 or XPA KO cells. In XPA KO cells, the proportion ofmutants induced by a single 8-oxoG (7.6%) was comparable with that in TSCER122 cells (8.1%). In contrast, the lack of XPA significantly enhanced the mutant proportion of tandem8-oxoG in the transcribed strand (12%) compared with that in TSCER122 cells (7.4%) but not in the non-transcribed strand (12% and 11% in XPA KO and TSCER122 cells, respectively). By sequencing the tandem 8-oxoG- integrated loci in the transcribed strand, we found that the proportion of tandem mutations was markedly increased in XPA KO cells. These results indicate that NER is involved in repairing clustered DNA adducts in the transcribed strand in vivo.
  • Yuki Kanemaru, Akira Takeiri, Tetsuya Suzuki, Naoko A. Wada, Naoko Niimi, Petr Gruz, Shigeki Motoyama, Kaori Matsuzaki, Hiromi Tateishi, Kaoru Matsumoto, Akira Sassa, Kenichi Masumura, Masami Yamada, Masayuki Mishima, Kou-ichi Jishage, Kyomu Matsumoto, Noritaka Adachi, Masamitsu Honma, Takehiko Nohmi
    DNA REPAIR 28 143-143 2015年4月  査読有り
  • Akira Takeiri, Naoko A. Wada, Shigeki Motoyama, Kaori Matsuzaki, Hiromi Tateishi, Kaoru Matsumoto, Naoko Niimi, Akira Sassa, Petr Gruz, Kenichi Masumura, Masami Yamada, Masayuki Mishima, Kou-ichi Jishage, Takehiko Nohmi
    DNA REPAIR 24 113-121 2014年12月  査読有り
    Translesion DNA synthesis (TLS) is an important pathway that avoids genotoxicity induced by endogenous and exogenous agents. DNA polymerase kappa (Polk) is a specialized DNA polymerase involved in TLS but its protective roles against DNA damage in vivo are still unclear. To better understand these roles, we have established knock-in mice that express catalytically-inactive Polk and crossbred them with gpt delta mice, which possess reporter genes for mutations. The resulting mice (inactivated Polk KI mice) were exposed to mitomycin C (MMC), and the frequency of point mutations, micronucleus formation in peripheral erythrocytes, and gamma H2AX induction in the bone marrow was determined. The inactivated Polk KI mice exhibited significantly higher frequency of mutations at CpG and GpG sites, micronucleated cells, and gamma H2AX foci-positive cells than did the Polk wild-type (Polk(+)) mice. Recovery from MMC-induced DNA damage, which was evaluated by gamma H2AX induction, was retarded in embryonic fibroblasts from the knock-in mice when compared to those from the Polk(+) mice. These results suggest that Polk mediates TLS, which suppresses point mutations and DNA double-strand breaks caused by intra- and interstrand cross-links induced by MMC treatment. The established knock-in mice are extremely useful to elucidate the in vivo roles of the catalytic activity of Polk in suppressing DNA damage that was induced by a variety of genotoxic stresses. (C) 2014 Elsevier B.V. All rights reserved.
  • Akira Sassa, Melike Caglayan, Nadezhda S. Dyrkheeva, William A. Beard, Samuel H. Wilson
    JOURNAL OF BIOLOGICAL CHEMISTRY 289(20) 13996-14008 2014年5月  査読有り
    Background: Base excision repair is an important pathway for cytosine demethylation at the CpG dinucleotide for epigenetic control. Results: A deaminated 5-methylcytosine (thymine) and an adjacent oxidized guanine (7,8-dihydro-8-oxoguanine) retard base excision repair of each lesion. Conclusion: Altered in-tandem CpG dinucleotide is a poor substrate for base excision repair. Significance: Oxidized guanine in a CpG dinucleotide interferes with active DNA demethylation. Cytosine methylation and demethylation in tracks of CpG dinucleotides is an epigenetic mechanism for control of gene expression. The initial step in the demethylation process can be deamination of 5-methylcytosine producing the TpG alteration and T:G mispair, and this step is followed by thymine DNA glycosylase (TDG) initiated base excision repair (BER). A further consideration is that guanine in the CpG dinucleotide may become oxidized to 7,8-dihydro-8-oxoguanine (8-oxoG), and this could affect the demethylation process involving TDG-initiated BER. However, little is known about the enzymology of BER of altered in-tandem CpG dinucleotides; e.g. Tp8-oxoG. Here, we investigated interactions between this altered dinucleotide and purified BER enzymes, the DNA glycosylases TDG and 8-oxoG DNA glycosylase 1 (OGG1), apurinic/apyrimidinic (AP) endonuclease 1, DNA polymerase , and DNA ligases. The overall TDG-initiated BER of the Tp8-oxoG dinucleotide is significantly reduced. Specifically, TDG and DNA ligase activities are reduced by a 3-flanking 8-oxoG. In contrast, the OGG1-initiated BER pathway is blocked due to the 5-flanking T:G mispair; this reduces OGG1, AP endonuclease 1, and DNA polymerase activities. Furthermore, in TDG-initiated BER, TDG remains bound to its product AP site blocking OGG1 access to the adjacent 8-oxoG. These results reveal BER enzyme specificities enabling suppression of OGG1-initiated BER and coordination of TDG-initiated BER at this tandem alteration in the CpG dinucleotide.
  • Cağlayan M, Batra VK, Sassa A, Prasad R, Wilson SH
    Nature structural & molecular biology 21(5) 497-499 2014年5月  査読有り
  • Sassa A, Suzuki T, Kanemaru Y, Niimi N, Fujimoto H, Katafuchi A, Grúz P, Yasui M, Gupta RC, Johnson F, Ohta T, Honma M, Adachi N, Nohmi T
    DNA repair 15 21-28 2014年3月  査読有り
  • Petr Gruz, Akira Sassa, Akemi Hosoda, Hiroyuki Yamagishi, Yukio Usui, Masatomi Shimizu
    MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 760 73-76 2014年1月  査読有り
    Sodium azide is a strong mutagen which has been successfully employed in mutation breeding of crop plants. In biological systems, it is metabolized to azidoalanine, but further bioactivation to a putative ultimate mutagen as well as the nature of the induced DNA modifications leading to mutations remain elusive. In this study, mutations induced in the CAN1 gene of yeast Saccharomyces cerevisiae by the representative mutagen 3-azido-1,2-propanediol (azidoglycerol, AZG) have been sequenced. Analysis of the forward mutation spectrum to canavanine resistance revealed that AZG induced nearly exclusively G:C to A:T transitions. AZG also induced reversions to tryptophan prototrophy by base-pair substitutions in a dose-dependent manner. This unusual mutational specificity may be shared by other organic azido compounds. (C) 2013 Elsevier B.V. All rights reserved.
  • Akira Sassa, William A. Beard, David D. Shock, Samuel H. Wilson
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS (78) e50695 2013年8月  査読有り
    Human 8-oxoguanine DNA glycosylase (OGG1) excises the mutagenic oxidative DNA lesion 8-oxo-7,8-dihydroguanine (8-oxoG) from DNA. Kinetic characterization of OGG1 is undertaken to measure the rates of 8-oxoG excision and product release. When the OGG1 concentration is lower than substrate DNA, time courses of product formation are biphasic; a rapid exponential phase (i.e. burst) of product formation is followed by a linear steady-state phase. The initial burst of product formation corresponds to the concentration of enzyme properly engaged on the substrate, and the burst amplitude depends on the concentration of enzyme. The first-order rate constant of the burst corresponds to the intrinsic rate of 8-oxoG excision and the slower steady-state rate measures the rate of product release (product DNA dissociation rate constant, k(off)). Here, we describe steady-state, pre-steady-state, and single-turnover approaches to isolate and measure specific steps during OGG1 catalytic cycling. A fluorescent labeled lesion-containing oligonucleotide and purified OGG1 are used to facilitate precise kinetic measurements. Since low enzyme concentrations are used to make steady-state measurements, manual mixing of reagents and quenching of the reaction can be performed to ascertain the steady-state rate (k(off)). Additionally, extrapolation of the steady-state rate to a point on the ordinate at zero time indicates that a burst of product formation occurred during the first turnover (i.e. y-intercept is positive). The first-order rate constant of the exponential burst phase can be measured using a rapid mixing and quenching technique that examines the amount of product formed at short time intervals (<1 sec) before the steady-state phase and corresponds to the rate of 8-oxoG excision (i.e. chemistry). The chemical step can also be measured using a single-turnover approach where catalytic cycling is prevented by saturating substrate DNA with enzyme (E>S). These approaches can measure elementary rate constants that influence the efficiency of removal of a DNA lesion.
  • Akira Sassa, Nagisa Kamoshita, Tomonari Matsuda, Yuji Ishii, Isao Kuraoka, Takehiko Nohmi, Toshihiro Ohta, Masamitsu Honma, Manabu Yasui
    Mutagenesis 28(1) 81-88 2013年1月  査読有り
    Many chronic inflammatory conditions are associated with an increased risk of cancer development. At the site of inflammation, cellular DNA is damaged by hypochlorous acid (HOCl), a potent oxidant generated by myeloperoxidase. 8-Chloro-2′-deoxyguanosine (8-Cl-dG) is a major DNA adduct formed by HOCl and has been detected from the liver DNA and urine of rats administered lipopolysaccharide in an inflammation model. Thus, the 8-Cl-dG lesion may be associated with the carcinogenesis of inflamed tissues. In this study, we explored the miscoding properties of the 8-Cl-dG adduct generated by human DNA polymerases (pols). Site-specifically modified oligodeoxynucleotide containing a single 8-Cl-dG was prepared and used as a template in primer extension reactions catalysed by human pol α, κ or η. Primer extension reactions catalysed by pol α and κ in the presence of all four dNTPs were slightly retarded at the 8-Cl-dG site, while pol η readily bypassed the lesion. The fully extended products were analysed to quantify the miscoding frequency and specificity of 8-Cl-dG using two-phased polyacrylamide gel electrophoresis (PAGE). During the primer extension reaction in the presence of four dNTPs, pol κ promoted one-base deletion (6.4%), accompanied by the misincorporation of 2′-deoxyguanosine monophosphate (5.5%), dAMP (3.7%), and dTMP (3.5%) opposite the lesion. Pol α and η, on the other hand, exclusively incorporated dCMP opposite the lesion. The steady-state kinetic studies supported the results obtained from the two-phased PAGE assay. These results indicate that 8-Cl-dG is a mutagenic lesion the miscoding frequency and specificity varies depending on the DNA polymerase used. Thus, HOCl-induced 8-Cl-dG adduct may be involved in inflammation-driven carcinogenesis. © The Author 2012. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved.
  • Akira Sassa, William A. Beard, Rajendra Prasad, Samuel H. Wilson
    JOURNAL OF BIOLOGICAL CHEMISTRY 287(44) 36702-36710 2012年10月  査読有り
    Human 8-oxoguanine DNA glycosylase (OGG1) is a key enzyme involved in removing 7,8-dihydro-8-oxoguanine (8-oxoG), a highly mutagenic DNA lesion generated by oxidative stress. The removal of 8-oxoG by OGG1 is affected by the local DNA sequence, and this feature most likely contributes to observed mutational hot spots in genomic DNA. To elucidate the influence of local DNA sequence on 8-oxoG excision activity of OGG1, we conducted steady-state, pre-steady-state, and single turnover kinetic evaluation of OGG1 in alternate DNA sequence contexts. The sequence context effect was studied for a mutational hot spot at a CpG dinucleotide. Altering either the global DNA sequence or the 5'-flanking unmodified base pair failed to influence the excision of 8-oxoG. Methylation of the cytosine 5' to 8-oxoG also did not affect 8-oxoG excision. In contrast, a 5'-neighboring mismatch strongly decreased the rate of 8-oxoG base removal. Substituting the 5'-C in the CpG dinucleotide with T, A, or tetrahydrofuran (i.e. T:G, A:G, and tetrahydrofuran: G mispairs) resulted in a 10-, 13-, and 4-fold decrease in the rate constant for 8-oxoG excision, respectively. A greater loss in activity was observed when T:C or A:C was positioned 5' of 8-oxoG (59- and 108-fold, respectively). These results indicate that neighboring structural abnormalities 5' to 8-oxoG deter its repair thereby enhancing its mutagenic potential.
  • Akira Sassa, Toshihiro Ohta, Takehiko Nohmi, Masamitsu Honma, Manabu Yasui
    JOURNAL OF MOLECULAR BIOLOGY 406(5) 679-686 2011年3月  査読有り
    Chronic inflammation is known to lead to an increased risk for the development of cancer. Under inflammatory condition, cellular DNA is damaged by hypobromous acid, which is generated by myeloperoxidase and eosinophil peroxidase. The reactive brominating species induced brominated DNA adducts such as 8-bromo-2'-deoxyguanosine (8-Br-dG), 8-bromo-2'-deoxyadenosine (8-Br-dA), and 5-bromo-2'-deoxycytidine (5-Br-dC). These DNA lesions may be implicated in carcinogenesis. In this study, we analyzed the miscoding properties of the brominated DNA adducts generated by human DNA polymerases (pols). Site-specifically modified oligodeoxynucleotides containing a single 8-Br-dG, 8-Br-dA, or 5-Br-dC were used as a template in primer extension reactions catalyzed by human pols alpha, kappa, and eta. When 8-Br-dG-modified template was used, pol alpha primarily incorporated dCMP, the correct base, opposite the lesion, along with a small amount of one-base deletion (4.8%). Pol kappa also promoted one-base deletion (14.2%), accompanied by misincorporation of dGMP (9.5%), dAMP (8.0%), and dTMP (6.1%) opposite the lesion. Pol eta, on the other hand, readily bypassed the 8-Br-dG lesion in an error-free manner. As for 8-Br-dA and 5-Br-dC, all the pols bypassed the lesions and no miscoding events were observed. These results indicate that only 8-Br-dG, and not 5-Br-dC and 8-Br-dA, is a mutagenic lesion; the miscoding frequency and specificity vary depending on the DNA pol used. Thus, hypobromous acid-induced 8-Br-dG adduct may increase mutagenic potential at the site of inflammation. (C) 2011 Elsevier Ltd. All rights reserved.
  • Akira Sassa, Naoko Niimi, Hirofumi Fujimoto, Atsushi Katafuchi, Petr Gruz, Manabu Yasui, Ramesh C. Gupta, Francis Johnson, Toshihiro Ohta, Takehiko Nohmi
    MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 718(1-2) 10-17 2011年1月  査読有り
    Human cells possess multiple specialized DNA polymerases (Pols) that bypass a variety of DNA lesions which otherwise would block chromosome replication. Human polymerase kappa (Pol kappa) bypasses benzo[a]pyrene diolepoxide-N(2)-deoxyguanine (BPDE-N(2)-dG) DNA adducts in an almost error-free manner. To better understand the relationship between the structural features in the active site and lesion bypass by Pol kappa, we mutated codons corresponding to amino acids appearing close to the adducts in the active site, and compared bypass efficiencies. Remarkably, the substitution of alanine for phenylalanine 171 (F171), an amino acid conserved between Pol kappa and its bacterial counterpart Escherichia coli DinB, enhanced the efficiencies of dCMP incorporation opposite (-)- and (+)-trans-anti-BPDE-N(2)-dG 18-fold. This substitution affected neither the fidelity of TLS nor the efficiency of dCMP incorporation opposite normal guanine. This amino acid change also enhanced the binding affinity of Pol kappa to template/primer DNA containing (-)-trans-anti-BPDE-N(2)-dG. These results suggest that F171 functions as a molecular brake for TLS across BPDE-N(2)-dG by Pol kappa and that the F171A derivative of Pol kappa bypasses these DNA lesions more actively than does the wild-type enzyme. (C) 2010 Elsevier B.V. All rights reserved.
  • Sassa A, Niimi N, Fujimoto H, Katafuchi A, Grúz P, Yasui M, Gupta RC, Johnson F, Ohta T, Nohmi T
    Mutation research 718(1-2) 10-17 2011年1月  査読有り
  • Atsushi Katafuchi, Akira Sassa, Naoko Niimi, Petr Grúz, Hirofumi Fujimoto, Chikahide Masutani, Fumio Hanaoka, Toshihiro Ohta, Takehiko Nohmi
    Nucleic acids research 38(3) 859-67 2010年1月  査読有り
    Oxidized DNA precursors can cause mutagenesis and carcinogenesis when they are incorporated into the genome. Some human Y-family DNA polymerases (Pols) can effectively incorporate 8-oxo-dGTP, an oxidized form of dGTP, into a position opposite a template dA. This inappropriate G:A pairing may lead to transversions of A to C. To gain insight into the mechanisms underlying erroneous nucleotide incorporation, we changed amino acids in human Poleta and Polkappa proteins that might modulate their specificity for incorporating 8-oxo-dGTP into DNA. We found that Arg61 in Poleta was crucial for erroneous nucleotide incorporation. When Arg61 was substituted with lysine (R61K), the ratio of pairing of dA to 8-oxo-dGTP compared to pairing of dC was reduced from 660:1 (wild-type Poleta) to 7 : 1 (R61K). Similarly, Tyr112 in Polkappa was crucial for erroneous nucleotide incorporation. When Tyr112 was substituted with alanine (Y112A), the ratio of pairing was reduced from 11: 1 (wild-type Polkappa) to almost 1: 1 (Y112A). Interestingly, substitution at the corresponding position in Poleta, i.e. Phe18 to alanine, did not alter the specificity. These results suggested that amino acids at distinct positions in the active sites of Poleta and Polkappa might enhance 8-oxo-dGTP to favor the syn conformation, and thus direct its misincorporation into DNA.
  • Naoko Niimi, Akira Sassa, Atsushi Katafuchi, Petr Gruz, Hirofumi Fujimoto, Radha-Rani Bonala, Francis Johnson, Toshihiro Ohta, Takehiko Nohmi
    BIOCHEMISTRY 48(20) 4239-4246 2009年5月  査読有り
    Human DNA is continuously damaged by exogenous and endogenous genotoxic insults. To counteract DNA damage and ensure the completion of DNA replication, cells possess specialized DNA polymerases (Pols) that bypass a variety of DNA lesions. Human DNA polymerase kappa (hPol kappa) is a member of the Y-family of DNA Pols and a direct counterpart of DinB in Escherichia coli. hPol kappa is characterized by its ability to bypass several DNA adducts [e.g., benzo[a]pyrene diolepoxide-N(2)-deoxyguanine (BPDE-N(2)-dG) and thymine glycol] and efficiently extend primers with mismatches at the termini. hPol kappa is structurally distinct from E. coli DinB in that it possesses an similar to 100-amino acid extension at the N-terminus. Here, we report that tyrosine 112 (Y112), the steric gate amino acid of hPol kappa, which distinguishes dNTPs from rNTPs by sensing the 2'-hydroxy group of incoming nucleotides, plays a crucial role in extension reactions with mismatched primer termini. When Y112 was replaced with alanine, the amino acid change severely reduced the catalytic constant, i.e., k(cat), of the extending mismatched primers and lowered the efficiency, i.e., k(cat)/K(m), of this process by similar to 400-fold compared with that of the wild-type enzyme. In contrast, the amino acid replacement did not reduce the insertion efficiency of dCMP opposite BPDE-N(2)-dG in template DNA, nor did it affect the ability of hPol kappa to bind strongly to template-primer DNA with BPDE-N(2)-dG/dCMP. We conclude that the steric gate of hPol kappa is a major fidelity factor that regulates extension reactions from mismatched primer termini.

MISC

 38

書籍等出版物

 1

担当経験のある科目(授業)

 9

共同研究・競争的資金等の研究課題

 12