ハドロン宇宙国際研究センター

吉田 滋

Shigeru Yoshida

基本情報

所属
千葉大学 ハドロン宇宙国際研究センター 教授 (センター長)
学位
博士(理学)

ORCID ID
 https://orcid.org/0000-0003-2480-5105
J-GLOBAL ID
201901004226160990
researchmap会員ID
B000361295

主要な論文

 286
  • M G Aartsen, R Abbasi, M Ackermann, J Adams, J A Aguilar, M Ahlers, M Ahrens, C Alispach, P Allison, N M Amin, K Andeen, T Anderson, I Ansseau, G Anton, C Argüelles, T C Arlen, J Auffenberg, S Axani, H Bagherpour, X Bai, A Balagopal V, A Barbano, I Bartos, B Bastian, V Basu, V Baum, S Baur, R Bay, J J Beatty, K-H Becker, J Becker Tjus, S BenZvi, D Berley, E Bernardini, D Z Besson, G Binder, D Bindig, E Blaufuss, S Blot, C Bohm, M Bohmer, S Böser, O Botner, J Böttcher, E Bourbeau, J Bourbeau, F Bradascio, J Braun, S Bron, J Brostean-Kaiser, A Burgman, R T Burley, J Buscher, R S Busse, M Bustamante, M A Campana, E G Carnie-Bronca, T Carver, C Chen, P Chen, E Cheung, D Chirkin, S Choi, B A Clark, K Clark, L Classen, A Coleman, G H Collin, A Connolly, J M Conrad, P Coppin, P Correa, D F Cowen, R Cross, P Dave, C Deaconu, C De Clercq, J J DeLaunay, S De Kockere, H Dembinski, K Deoskar, S De Ridder, A Desai, P Desiati, K D de Vries, G de Wasseige, M de With, T DeYoung, S Dharani, A Diaz, J C D{\'{\i } }az-V{\'{e } }lez, H Dujmovic, M Dunkman, M A DuVernois, E Dvorak, T Ehrhardt, P Eller, R Engel, J J Evans, P A Evenson, S Fahey, K Farrag, A R Fazely, J Felde, A T Fienberg, K Filimonov, C Finley, L Fischer, D Fox, A Franckowiak, E Friedman, A Fritz, T K Gaisser, J Gallagher, E Ganster, D Garcia-Fern, ez, S Garrappa, A Gartner, L Gerhard, R Gernhaeuser, A Ghadimi, C Glaser, T Glauch, T Glüsenkamp, A Goldschmidt, J G Gonzalez, S Goswami, D Grant, T Gr{\'{e } }goire, Z Griffith, S Griswold, M Gündüz, C Haack, A Hallgren, R Halliday, L Halve, F Halzen, J C Hanson, K Hanson, J Hardin, J Haugen, A Haungs, S Hauser, D Hebecker, D Heinen, P Heix, K Helbing, R Hellauer, F Henningsen, S Hickford, J Hignight, C Hill, G C Hill, K D Hoffman, B Hoffmann, R Hoffmann, T Hoinka, B Hokanson-Fasig, K Holzapfel, K Hoshina, F Huang, M Huber, T Huber, T Huege, K Hughes, K Hultqvist, M Hünnefeld, R Hussain, S In, N Iovine, A Ishihara, M Jansson, G S Japaridze, M Jeong, B J P Jones, F Jonske, R Joppe, O Kalekin, D Kang, W Kang, X Kang, A Kappes, D Kappesser, T Karg, M Karl, A Karle, T Katori, U Katz, M Kauer, A Keivani, M Kellermann, J L Kelley, A Kheir, ish, J Kim, K Kin, T Kintscher, J Kiryluk, T Kittler, M Kleifges, S R Klein, R Koirala, H Kolanoski, L Köpke, C Kopper, S Kopper, D J Koskinen, P Koundal, M Kovacevich, M Kowalski, C B Krauss, K Krings, G Krückl, N Kulacz, N Kurahashi, C Lagunas Gualda, R Lahmann, J L Lanfranchi, M J Larson, U Latif, F Lauber, J P Lazar, K Leonard, A Leszczy{\'{n } }ska, Y Li, Q R Liu, E Lohfink, J LoSecco, C J Lozano Mariscal, L Lu, F Lucarelli, A Ludwig, J Lünemann, W Luszczak, Y Lyu, W Y Ma, J Madsen, G Maggi, K B M Mahn, Y Makino, P Mallik, S Mancina, S M, alia, I C Mari{\c{s } }, S Marka, Z Marka, R Maruyama, K Mase, R Maunu, F McNally, K Meagher, A Medina, M Meier, S Meighen-Berger, J Merz, Z S Meyers, J Micallef, D Mockler, G Moment{\'{e } }, T Montaruli, R W Moore, R Morse, M Moulai, P Muth, R Naab, R Nagai, J Nam, U Nauman, J Necker, G Neer, A Nelles, L V Nguyễn, H Niederhausen, M U Nisa, S C Nowicki, D R Nygren, E Oberla, A Obertacke Pollmann, M Oehler, A Olivas, E O'Sullivan, Y Pan, H P, ya, D V Pankova, L Papp, N Park, G K Parker, E N Paudel, P Peiffer, C P{\'{e } }rez de los Heros, T C Petersen, S Philippen, D Pieloth, S Pieper, J L Pinfold, A Pizzuto, I Plaisier, M Plum, Y Popovych, A Porcelli, M Prado Rodriguez, P B Price, G T Przybylski, C Raab, A Raissi, M Rameez, L Rauch, K Rawlins, I C Rea, A Rehman, R Reimann, M Renschler, G Renzi, E Resconi, S Reusch, W Rhode, M Richman, B Riedel, M Riegel, E J Roberts, S Robertson, G Roellinghoff, M Rongen, C Rott, T Ruhe, D Ryckbosch, D Rysewyk Cantu, I Safa, S E Sanchez Herrera, A S, rock, J S, roos, P S, strom, M Sant, er, S Sarkar, S Sarkar, K Satalecka, M Scharf, M Schaufel, H Schieler, P Schlunder, T Schmidt, A Schneider, J Schneider, F G Schröder, L Schumacher, S Sclafani, D Seckel, S Seunarine, M H Shaevitz, A Sharma, S Shefali, M Silva, D Smith, B Smithers, R Snihur, J Soedingrekso, D Soldin, S Söldner-Rembold, M Song, D Southall, G M Spiczak, C Spiering, J Stachurska, M Stamatikos, T Stanev, R Stein, J Stettner, A Steuer, T Stezelberger, R G Stokstad, N L Strotjohann, T Stürwald, T Stuttard, G W Sullivan, I Taboada, A Taketa, H K M Tanaka, F Tenholt, S Ter-Antonyan, A Terliuk, S Tilav, K Tollefson, L Tomankova, C Tönnis, J Torres, S Toscano, D Tosi, A Trettin, M Tselengidou, C F Tung, A Turcati, R Turcotte, C F Turley, J P Twagirayezu, B Ty, E Unger, M A Unl, Elorrieta, J V, enbroucke, D van Eijk, N van Eijndhoven, D Vannerom, J van Santen, D Veberic, S Verpoest, A Vieregg, M Vraeghe, C Walck, T B Watson, C Weaver, A Weindl, L Weinstock, M J Weiss, J Weldert, C Welling, C Wendt, J Werthebach, N Whitehorn, K Wiebe, C H Wiebusch, D R Williams, S A Wissel, M Wolf, T R Wood, K Woschnagg, G Wrede, S Wren, J Wulff, X W Xu, Y Xu, J P Yanez, S Yoshida, T Yuan, Z Zhang, S Zierke, M Zöcklein
    Journal of Physics G: Nuclear and Particle Physics 48(6) 060501-060501 2021年6月1日  査読有り
    The observation of electromagnetic radiation from radio to γ-ray wavelengths has provided a wealth of information about the Universe. However, at PeV (1015 eV) energies and above, most of the Universe is impenetrable to photons. New messengers, namely cosmic neutrinos, are needed to explore the most extreme environments of the Universe where black holes, neutron stars, and stellar explosions transform gravitational energy into non-thermal cosmic rays. These energetic particles havemillions of times higher energies than those produced in the most powerful particle accelerators on Earth. As neutrinos can escape from regions otherwise opaque to radiation, they allow an unique view deep into exploding stars and the vicinity of the event horizons of black holes. The discovery of cosmic neutrinos with IceCube has opened this new window on the Universe. IceCube has been successful in finding first evidence for cosmic particle acceleration in the jet of an active galactic nucleus. Yet, ultimately, its sensitivity is too limited to detect even the brightest neutrino sources with high significance, or to detect populations of less luminous sources. In thiswhite paper, we present an overview of a next-generation instrument, IceCube-Gen2, which will sharpen our understanding of the processes and environments that govern the Universe at the highest energies. IceCube-Gen2 is designed to: (a) Resolve the high-energy neutrino sky from TeV to EeV energies (b) Investigate cosmic particle acceleration through multi-messenger observations (c) Reveal the sources and propagation of the highest energy particles in the Universe (d) Probe fundamental physics with high-energy neutrinos IceCube-Gen2 will enhance the existing IceCube detector at the South Pole. It will increase the annual rate of observed cosmic neutrinos by a factor of ten compared to IceCube, and will be able to detect sources five times fainter than its predecessor. Furthermore, through the addition of a radio array, IceCube- Gen2 will extend the energy range by several orders of magnitude compared to IceCube. Construction will take 8 years and cost about $350M. The goal is to have IceCube-Gen2 fully operational by 2033. IceCube-Gen2 will play an essential role in shaping the new era of multimessenger astronomy, fundamentally advancing our knowledge of the highenergy Universe. This challenging mission can be fully addressed only through the combination of the information from the neutrino, electromagnetic, and gravitational wave emission of high-energy sources, in concert with the new survey instruments across the electromagnetic spectrum and gravitational wave detectors which will be available in the coming years.
  • M. G. Aartsen, R. Abbasi, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers, M. Ahrens, C. Alispach, N. M. Amin, K. Andeen, T. Anderson, I. Ansseau, G. Anton, C. Argüelles, J. Auffenberg, S. Axani, H. Bagherpour, X. Bai, A. Balagopal V., A. Barbano, S. W. Barwick, B. Bastian, V. Basu, V. Baum, S. Baur, R. Bay, J. J. Beatty, K.-H. Becker, J. Becker Tjus, C. Bellenghi, S. BenZvi, D. Berley, E. Bernardini, D. Z. Besson, G. Binder, D. Bindig, E. Blaufuss, S. Blot, C. Bohm, S. Böser, O. Botner, J. Böttcher, E. Bourbeau, J. Bourbeau, F. Bradascio, J. Braun, S. Bron, J. Brostean-Kaiser, A. Burgman, J. Buscher, R. S. Busse, M. A. Campana, T. Carver, C. Chen, E. Cheung, D. Chirkin, S. Choi, B. A. Clark, K. Clark, L. Classen, A. Coleman, G. H. Collin, J. M. Conrad, P. Coppin, P. Correa, D. F. Cowen, R. Cross, P. Dave, C. De Clercq, J. J. DeLaunay, H. Dembinski, K. Deoskar, S. De Ridder, A. Desai, P. Desiati, K. D. de Vries, G. de Wasseige, M. de With, T. DeYoung, S. Dharani, A. Diaz, J. C. D{\'{\i } }az-V{\'{e } }lez, H. Dujmovic, M. Dunkman, M. A. DuVernois, E. Dvorak, T. Ehrhardt, P. Eller, R. Engel, P. A. Evenson, S. Fahey, A. R. Fazely, A. Fedynitch, J. Felde, A. T. Fienberg, K. Filimonov, C. Finley, L. Fischer, D. Fox, A. Franckowiak, E. Friedman, A. Fritz, T. K. Gaisser, J. Gallagher, E. Ganster, S. Garrappa, L. Gerhardt, A. Ghadimi, T. Glauch, T. Glüsenkamp, A. Goldschmidt, J. G. Gonzalez, S. Goswami, D. Grant, T. Gr{\'{e } }goire, Z. Griffith, S. Griswold, M. Gündüz, C. Haack, A. Hallgren, R. Halliday, L. Halve, F. Halzen, K. Hanson, J. Hardin, A. Haungs, S. Hauser, D. Hebecker, P. Heix, K. Helbing, R. Hellauer, F. Henningsen, S. Hickford, J. Hignight, C. Hill, G. C. Hill, K. D. Hoffman, R. Hoffmann, T. Hoinka, B. Hokanson-Fasig, K. Hoshina, F. Huang, M. Huber, T. Huber, K. Hultqvist, M. Hünnefeld, R. Hussain, S. In, N. Iovine, A. Ishihara, M. Jansson, G. S. Japaridze, M. Jeong, B. J. P. Jones, F. Jonske, R. Joppe, D. Kang, W. Kang, X. Kang, A. Kappes, D. Kappesser, T. Karg, M. Karl, A. Karle, U. Katz, M. Kauer, M. Kellermann, J. L. Kelley, A. Kheir, ish, J. Kim, K. Kin, T. Kintscher, J. Kiryluk, T. Kittler, S. R. Klein, R. Koirala, H. Kolanoski, L. Köpke, C. Kopper, S. Kopper, D. J. Koskinen, P. Koundal, M. Kovacevich, M. Kowalski, K. Krings, G. Krückl, N. Kulacz, N. Kurahashi, A. Kyriacou, C. Lagunas Gualda, J. L. Lanfranchi, M. J. Larson, F. Lauber, J. P. Lazar, K. Leonard, A. Leszczy{\'{n } }ska, Y. Li, Q. R. Liu, E. Lohfink, C. J. Lozano Mariscal, L. Lu, F. Lucarelli, A. Ludwig, J. Lünemann, W. Luszczak, Y. Lyu, W. Y. Ma, J. Madsen, G. Maggi, K. B. M. Mahn, Y. Makino, P. Mallik, S. Mancina, I. C. Mari{\c{s } }, R. Maruyama, K. Mase, R. Maunu, F. McNally, K. Meagher, M. Medici, A. Medina, M. Meier, S. Meighen-Berger, J. Merz, J. Micallef, D. Mockler, G. Moment{\'{e } }, T. Montaruli, R. W. Moore, R. Morse, M. Moulai, P. Muth, R. Naab, R. Nagai, U. Naumann, J. Necker, G. Neer, L. V. Nguyen, H. Niederhausen, M. U. Nisa, S. C. Nowicki, D. R. Nygren, A. Obertacke Pollmann, M. Oehler, A. Olivas, E. O'Sullivan, H. P, ya, D. V. Pankova, N. Park, G. K. Parker, E. N. Paudel, P. Peiffer, C. P{\'{e } }rez de los Heros, S. Philippen, D. Pieloth, S. Pieper, A. Pizzuto, M. Plum, Y. Popovych, A. Porcelli, M. Prado Rodriguez, P. B. Price, G. T. Przybylski, C. Raab, A. Raissi, M. Rameez, L. Rauch, K. Rawlins, I. C. Rea, A. Rehman, R. Reimann, M. Relich, M. Renschler, G. Renzi, E. Resconi, S. Reusch, W. Rhode, M. Richman, B. Riedel, S. Robertson, G. Roellinghoff, M. Rongen, C. Rott, T. Ruhe, D. Ryckbosch, D. Rysewyk Cantu, I. Safa, S. E. Sanchez Herrera, A. S, rock, J. S, roos, M. Sant, er, S. Sarkar, S. Sarkar, K. Satalecka, M. Scharf, M. Schaufel, H. Schieler, P. Schlunder, T. Schmidt, A. Schneider, J. Schneider, F. G. Schröder, L. Schumacher, S. Sclafani, D. Seckel, S. Seunarine, S. Shefali, M. Silva, B. Smithers, R. Snihur, J. Soedingrekso, D. Soldin, M. Song, G. M. Spiczak, C. Spiering, J. Stachurska, M. Stamatikos, T. Stanev, R. Stein, J. Stettner, A. Steuer, T. Stezelberger, R. G. Stokstad, N. L. Strotjohann, T. Stürwald, T. Stuttard, G. W. Sullivan, I. Taboada, F. Tenholt, S. Ter-Antonyan, A. Terliuk, S. Tilav, K. Tollefson, L. Tomankova, C. Tönnis, S. Toscano, D. Tosi, A. Trettin, M. Tselengidou, C. F. Tung, A. Turcati, R. Turcotte, C. F. Turley, J. P. Twagirayezu, B. Ty, E. Unger, M. A. Unl, Elorrieta, J. V, enbroucke, D. van Eijk, N. van Eijndhoven, D. Vannerom, J. van Santen, S. Verpoest, M. Vraeghe, C. Walck, A. Wallace, N. W, kowsky, T. B. Watson, C. Weaver, A. Weindl, M. J. Weiss, J. Weldert, C. Wendt, J. Werthebach, B. J. Whelan, N. Whitehorn, K. Wiebe, C. H. Wiebusch, D. R. Williams, M. Wolf, T. R. Wood, K. Woschnagg, G. Wrede, J. Wulff, X. W. Xu, Y. Xu, J. P. Yanez, S. Yoshida, T. Yuan, Z. Zhang, M. Zöcklein
    Nature 591(7849) 220-224 2021年3月11日  査読有り
    The Glashow resonance describes the resonant formation of a W− boson during the interaction of a high-energy electron antineutrino with an electron1, peaking at an antineutrino energy of 6.3 petaelectronvolts (PeV) in the rest frame of the electron. Whereas this energy scale is out of reach for currently operating and future planned particle accelerators, natural astrophysical phenomena are expected to produce antineutrinos with energies beyond the PeV scale. Here we report the detection by the IceCube neutrino observatory of a cascade of high-energy particles (a particle shower) consistent with being created at the Glashow resonance. A shower with an energy of 6.05 ± 0.72 PeV (determined from Cherenkov radiation in the Antarctic Ice Sheet) was measured. Features consistent with the production of secondary muons in the particle shower indicate the hadronic decay of a resonant W− boson, confirm that the source is astrophysical and provide improved directional localization. The evidence of the Glashow resonance suggests the presence of electron antineutrinos in the astrophysical flux, while also providing further validation of the standard model of particle physics. Its unique signature indicates a method of distinguishing neutrinos from antineutrinos, thus providing a way to identify astronomical accelerators that produce neutrinos via hadronuclear or photohadronic interactions, with or without strong magnetic fields. As such, knowledge of both the flavour (that is, electron, muon or tau neutrinos) and charge (neutrino or antineutrino) will facilitate the advancement of neutrino astronomy.
  • Shigeru Yoshida, Kohta Murase
    Physical Review D 102(8) 2020年10月21日  査読有り
  • Shigeru Yoshida
    Physical Review Letters 124(5) 2020年2月6日  
    This Letter presents the results from pointlike neutrino source searches using ten years of IceCube data collected between April 6, 2008 and July 10, 2018. We evaluate the significance of an astrophysical signal from a pointlike source looking for an excess of clustered neutrino events with energies typically above ∼1 TeV among the background of atmospheric muons and neutrinos. We perform a full-sky scan, a search within a selected source catalog, a catalog population study, and three stacked Galactic catalog searches. The most significant point in the northern hemisphere from scanning the sky is coincident with the Seyfert II galaxy NGC 1068, which was included in the source catalog search. The excess at the coordinates of NGC 1068 is inconsistent with background expectations at the level of 2.9σ after accounting for statistical trials from the entire catalog. The combination of this result along with excesses observed at the coordinates of three other sources, including TXS 0506+056, suggests that, collectively, correlations with sources in the northern catalog are inconsistent with background at 3.3σ significance. The southern catalog is consistent with background. These results, all based on searches for a cumulative neutrino signal integrated over the 10 years of available data, motivate further study of these and similar sources, including time-dependent analyses, multimessenger correlations, and the possibility of stronger evidence with coming upgrades to the detector.
  • Shigeru Yoshida
    Physical Review D 98(6) 2018年9月12日  査読有り
    We report a quasidifferential upper limit on the extremely-high-energy (EHE) neutrino flux above 5×106 GeV based on an analysis of nine years of IceCube data. The astrophysical neutrino flux measured by IceCube extends to PeV energies, and it is a background flux when searching for an independent signal flux at higher energies, such as the cosmogenic neutrino signal. We have developed a new method to place robust limits on the EHE neutrino flux in the presence of an astrophysical background, whose spectrum has yet to be understood with high precision at PeV energies. A distinct event with a deposited energy above 106 GeV was found in the new two-year sample, in addition to the one event previously found in the seven-year EHE neutrino search. These two events represent a neutrino flux that is incompatible with predictions for a cosmogenic neutrino flux and are considered to be an astrophysical background in the current study. The obtained limit is the most stringent to date in the energy range between 5×106 and 2×1010 GeV. This result constrains neutrino models predicting a three-flavor neutrino flux of Eν2φνe+νμ+ντ≃2×10-8 GeV/cm2 sec sr at 109 GeV. A significant part of the parameter space for EHE neutrino production scenarios assuming a proton-dominated composition of ultra-high-energy cosmic rays is disfavored independently of uncertain models of the extragalactic background light which previous IceCube constraints partially relied on.
  • Shigeru Yoshida
    Science 361(6398) eaat1378-eaat1378 2018年7月12日  査読有り
    Previous detections of individual astrophysical sources of neutrinos are limited to the Sun and the supernova 1987A, whereas the origins of the diffuse flux of high-energy cosmic neutrinos remain unidentified. On 22 September 2017, we detected a high-energy neutrino, IceCube-170922A, with an energy of ~290 tera–electron volts. Its arrival direction was consistent with the location of a known γ-ray blazar, TXS 0506+056, observed to be in a flaring state. An extensive multiwavelength campaign followed, ranging from radio frequencies to γ-rays. These observations characterize the variability and energetics of the blazar and include the detection of TXS 0506+056 in very-high-energy γ-rays. This observation of a neutrino in spatial coincidence with a γ-ray–emitting blazar during an active phase suggests that blazars may be a source of high-energy neutrinos.
  • M. G. Aartsen, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers, M. Ahrens, D. Altmann, K. Andeen, T. Anderson, I. Ansseau, G. Anton, M. Archinger, C. Arguelles, J. Auffenberg, S. Axani, X. Bai, S. W. Barwick, V. Baum, R. Bay, J. J. Beatty, J. Becker Tjus, K-H. Becker, S. BenZvi, D. Berley, E. Bernardini, A. Bernhard, D. Z. Besson, G. Binder, D. Bindig, M. Bissok, E. Blaufuss, S. Blot, C. Bohm, M. Borner, E. Bos, D. Bose, S. Boser, O. Botner, J. Braun, L. Brayeur, H. -P. Bretz, S. Bron, A. Burgman, T. Carver, M. Casier, E. Cheung, D. Chirkin, A. Christov, K. Clark, L. Classen, S. Coenders, G. H. Collin, J. M. Conrad, D. F. Cowen, R. Cross, M. Day, J. P. A. M. de Andre, C. De Clercq, E. del Pino Rosendo, H. Dembinski, S. De Ridder, P. Desiati, K. D. de Vries, G. de Wasseige, M. de With, T. DeYoung, J. C. Diaz-Velez, V. di Lorenzo, H. Dujmovic, J. P. Dumm, M. Dunkman, B. Eberhardt, T. Ehrhardt, B. Eichmann, P. Eller, S. Euler, P. A. Evenson, S. Fahey, A. R. Fazely, J. Feintzeig, J. Felde, K. Filimonov, C. Finley, S. Flis, C. -C. Fosig, A. Franckowiak, E. Friedman, T. Fuchs, T. K. Gaisser, J. Gallagher, L. Gerhardt, K. Ghorbani, W. Giang, L. Gladstone, T. Glauch, T. Glusenkamp, A. Goldschmidt, J. G. Gonzalez, D. Grant, Z. Griffith, C. Haack, A. Hallgren, F. Halzen, E. Hansen, T. Hansmann, K. Hanson, D. Hebecker, D. Heereman, K. Helbing, R. Hellauer, S. Hickford, J. Hignight, G. C. Hill, K. D. Hoffman, R. Hoffmann, K. Hoshina, F. Huang, M. Huber, K. Hultqvist, S. In, A. Ishihara, E. Jacobi, G. S. Japaridze, M. Jeong, K. Jero, B. J. P. Jones, W. Kang, A. Kappes, T. Karg, A. Karle, U. Katz, M. Kauer, A. Keivani, J. L. Kelley, A. Kheirandish, J. Kim, M. Kim, T. Kintscher, J. Kiryluk, T. Kittler, S. R. Klein, G. Kohnen, R. Koirala, H. Kolanoski, R. Konietz, L. Kopke, C. Kopper, S. Kopper, D. J. Koskinen, M. Kowalski, K. Krings, M. Kroll, G. Kruckl, C. Kruger, J. Kunnen, S. Kunwar, N. Kurahashi, T. Kuwabara, M. Labare, J. L. Lanfranchi, M. J. Larson, F. Lauber, D. Lennarz, M. Lesiak-Bzdak, M. Leuermann, L. Lu, J. Lunemann, J. Madsen, G. Maggi, K. B. M. Mahn, S. Mancina, M. Mandelartz, R. Maruyama, K. Mase, R. Maunu, F. McNally, K. Meagher, M. Medici, M. Meier, A. Meli, T. Menne, G. Merino, T. Meures, S. Miarecki, T. Montaruli, M. Moulai, R. Nahnhauer, U. Naumann, G. Neer, H. Niederhausen, S. C. Nowicki, D. R. Nygren, A. Obertacke Pollmann, A. Olivas, A. O'Murchadha, T. Palczewski, H. Pandya, D. V. Pankova, P. Peiffer, O. Penek, J. A. Pepper, C. Perez de los Heros, D. Pieloth, E. Pinat, P. B. Price, G. T. Przybylski, M. Quinnan, C. Raab, L. Radel, M. Rameez, K. Rawlins, R. Reimann, B. Relethford, M. Relich, E. Resconi, W. Rhode, M. Richman, B. Riedel, S. Robertson, M. Rongen, C. Rott, T. Ruhe, D. Ryckbosch, D. Rysewyk, L. Sabbatini, S. E. Sanchez Herrera, A. Sandrock, J. Sandroos, S. Sarkar, K. Satalecka, P. Schlunder, T. Schmidt, S. Schoenen, S. Schoneberg, L. Schumacher, D. Seckel, S. Seunarine, D. Soldin, M. Song, G. M. Spiczak, C. Spiering, T. Stanev, A. Stasik, J. Stettner, A. Steuer, T. Stezelberger, R. G. Stokstad, A. Stossl, R. Strom, N. L. Strotjohann, G. W. Sullivan, M. Sutherland, H. Taavola, I. Taboada, J. Tatar, E. Tenholt, S. Ter-Antonyan, A. Terliuk, G. Tesic, S. Tilav, P. A. Toale, M. N. Tobin, S. Toscano, D. Tosi, M. Tselengidou, A. Turcati, E. Unger, M. Usner, J. Vandenbroucke, N. van Eijndhoven, S. Vanheule, M. van Rossem, J. van Santen, M. Vehring, M. Voge, E. Vogel, M. Vraeghe, C. Walck, A. Wallace, M. Wallraff, N. Wandkowsky, Ch. Weaver, M. J. Weiss, C. Wendt, S. Westerhoff, B. J. Whelan, S. Wickmann, K. Wiebe, C. H. Wiebusch, L. Wille, D. R. Williams, L. Wills, M. Wolf, T. R. Wood, E. Woolsey, K. Woschnagg, D. L. Xu, X. W. Xu, Y. Xu, J. P. Yanez, G. Yodh, S. Yoshida, M. Zoll
    ASTROPARTICLE PHYSICS 92 30-41 2017年6月  査読有り
    Although high-energy astrophysical neutrinos were discovered in 2013, their origin is still unknown. Aiming for the identification of an electromagnetic counterpart of a rapidly fading source, we have implemented a realtime analysis framework for the IceCube neutrino observatory. Several analyses selecting neutrinos of astrophysical origin are now operating in realtime at the detector site in Antarctica and are producing alerts for the community to enable rapid follow-up observations. The goal of these observations is to locate the astrophysical objects responsible for these neutrino signals. This paper highlights the infrastructure in place both at the South Pole site and at IceCube facilities in the north that have enabled this fast follow-up program to be implemented. Additionally, this paper presents the first realtime analyses to be activated within this framework, highlights their sensitivities to astrophysical neutrinos and background event rates, and presents an outlook for future discoveries. (C) 2017 Elsevier B.V. All rights reserved.
  • M. G. Aartsen, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers, M. Ahrens, D. Altmann, K. Andeen, T. Anderson, I. Ansseau, G. Anton, M. Archinger, C. Arguelles, R. Auer, J. Auffenberg, S. Axani, J. Baccus, X. Bai, S. Barnet, S. W. Barwick, V. Baum, R. Bay, K. Beattie, J. J. Beatty, J. Becker Tjus, K. -H. Becker, T. Bendfelt, S. BenZvi, D. Berley, E. Bernardini, A. Bernhard, D. Z. Besson, G. Binder, D. Bindig, M. Bissok, E. Blaufuss, S. Blot, D. Boersma, C. Bohm, M. Boerner, F. Bos, D. Bose, S. Boeser, O. Botner, A. Bouchta, J. Braun, L. Brayeur, H. -P. Bretz, S. Bron, A. Burgman, C. Burreson, T. Carver, M. Casier, E. Cheung, D. Chirkin, A. Christov, K. Clark, L. Classen, S. Coenders, G. H. Collin, J. M. Conrad, D. F. Cowen, R. Cross, C. Day, M. Day, J. P. A. M. de Andre, C. De Clercq, E. del Pino Rosendo, H. Dembinski, S. De Ridder, F. Descamps, P. Desiati, K. D. de Vries, G. de Wasseige, M. de With, T. DeYoung, J. C. Diaz-Velez, V. di Lorenzo, H. Dujmovic, J. P. Dumm, M. Dunkman, B. Eberhardt, W. R. Edwards, T. Ehrhardt, B. Eichmann, P. Eller, S. Euler, P. A. Evenson, S. Fahey, A. R. Fazely, J. Feintzeig, J. Felde, K. Filimonov, C. Finley, S. Flis, C. -C. Foesig, A. Franckowiak, M. Frere, E. Friedman, T. Fuchs, T. K. Gaisser, J. Gallagher, L. Gerhardt, K. Ghorbani, W. Giang, L. Gladstone, T. Glauch, D. Glowacki, T. Gluesenkamp, A. Goldschmidt, J. G. Gonzalez, D. Grant, Z. Griffith, L. Gustafsson, C. Haack, A. Hallgren, F. Halzen, E. Hansen, T. Hansmann, K. Hanson, J. Haugen, D. Hebecker, D. Heereman, K. Helbing, R. Hellauer, R. Heller, S. Hickford, J. Hignight, G. C. Hill, K. D. Hoffman, R. Hoffmann, K. Hoshina, F. Huang, M. Huber, P. O. Hulth, K. Hultqvist, S. In, M. Inaba, A. Ishihara, E. Jacobi, J. Jacobsen, G. S. Japaridze, M. Jeong, K. Jero, A. Jones, B. J. P. Jones, J. Joseph, W. Kang, A. Kappes, T. Karg, A. Karle, U. Katz, M. Kauer, A. Keivani, J. L. Kelley, J. Kemp, A. Kheirandish, J. Kim, M. Kim, T. Kintscher, J. Kiryluk, N. Kitamura, T. Kittler, S. R. Klein, S. Kleinfelder, M. Kleist, G. Kohnen, R. Koirala, H. Kolanoski, R. Konietz, L. Koepke, C. Kopper, S. Kopper, D. J. Koskinen, M. Kowalski, M. Krasberg, K. Krings, M. Kroll, G. Krueckl, C. Kruger, J. Kunnen, S. Kunwar, N. Kurahashi, T. Kuwabara, M. Labare, K. Laihem, H. Landsman, J. L. Lanfranchi, M. J. Larson, F. Lauber, A. Laundrie, D. Lennarz, H. Leich, M. Lesiak-Bzdak, M. Leuermann, L. Lu, J. Ludwig, J. Lunemann, C. Mackenzie, J. Madsen, G. Maggi, K. B. M. Mahn, S. Mancina, M. Mandelartz, R. Maruyama, K. Mase, H. Matis, R. Maunu, F. McNally, C. P. McParland, P. Meade, K. Meagher, M. Medici, M. Meier, A. Meli, T. Menne, G. Merino, T. Meures, S. Miarecki, R. H. Minor, T. Montaruli, M. Moulai, T. Murray, R. Nahnhauer, U. Naumann, G. Neer, M. Newcomb, H. Niederhausen, S. C. Nowicki, D. R. Nygren, A. Obertacke Pollmann, A. Olivas, A. O'Murchadha, T. Palczewski, H. Pandya, D. V. Pankova, S. Patton, P. Peiffer, O. Penek, J. A. Pepper, C. Perez de los Heros, C. Pettersen, D. Pieloth, E. Pinat, P. B. Price, G. T. Przybylski, M. Quinnan, C. Raab, L. Raedel, M. Rameez, K. Rawlins, R. Reimann, B. Relethford, M. Relich, E. Resconi, W. Rhode, M. Richman, B. Riedel, S. Robertson, M. Rongen, C. Roucelle, C. Rott, T. Ruhe, D. Ryckbosch, D. Rysewyk, L. Sabbatini, S. E. Sanchez Herrera, A. Sandrock, J. Sandroos, P. Sandstrom, S. Sarkar, K. Satalecka, P. Schlunder, T. Schmidt, S. Schoenen, S. Schoeneberg, A. Schukraft, L. Schumacher, D. Seckel, S. Seunarine, M. Solarz, D. Soldin, M. Song, G. M. Spiczak, C. Spiering, T. Stanev, A. Stasik, J. Stettner, A. Steuer, T. Stezelberger, R. G. Stokstad, A. Stoessl, R. Strom, N. L. Strotjohann, K. -H. Sulanke, G. W. Sullivan, M. Sutherland, H. Taavola, I. Taboada, J. Tatar, F. Tenholt, S. Ter-Antonyan, A. Terliuk, G. Tesic, L. Thollander, S. Tilav, P. A. Toale, M. N. Tobin, S. Toscano, D. Tosi, M. Tselengidou, A. Turcati, E. Unger, M. Usner, J. Vandenbroucke, N. van Eijndhoven, S. Vanheule, M. van Rossem, J. van Santen, M. Vehring, M. Voge, E. Vogel, M. Vraeghe, D. Wahl, C. Walck, A. Wallace, M. Wallraff, N. Wandkowsky, Ch. Weaver, M. J. Weiss, C. Wendt, S. Westerhoff, D. Wharton, B. J. Whelan, S. Wickmann, K. Wiebe, C. H. Wiebusch, L. Wille, D. R. Williams, L. Wills, P. Wisniewski, M. Wolf, T. R. Wood, E. Woolsey, K. Woschnagg, D. L. Xu, X. W. Xu, Y. Xu, J. P. Yanez, G. Yodh, S. Yoshida, M. Zoll
    JOURNAL OF INSTRUMENTATION 12(3) 2017年3月  査読有り
    The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy neutrino detector built into the ice at the South Pole. Construction of IceCube, the largest neutrino detector built to date, was completed in 2011 and enabled the discovery of high-energy astrophysical neutrinos. We describe here the design, production, and calibration of the IceCube digital optical module (DOM), the cable systems, computing hardware, and our methodology for drilling and deployment. We also describe the online triggering and data filtering systems that select candidate neutrino and cosmic ray events for analysis. Due to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are operating and collecting data. IceCube routinely achieves a detector uptime of 99% by emphasizing software stability and monitoring. Detector operations have been stable since construction was completed, and the detector is expected to operate at least until the end of the next decade.
  • Shimizu S, Ishihara A, Stoessl A, Yoshida S
    Proceedings of Science 2017年  査読有り
  • M. G. Aartsen, K. Abraham, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers, M. Ahrens, D. Altmann, K. Andeen, T. Anderson, I. Ansseau, G. Anton, M. Archinger, C. Argueelles, J. Auffenberg, S. Axani, X. Bai, S. W. Barwick, V. Baum, R. Bay, J. J. Beatty, J. Becker Tjus, K. -H. Becker, S. Benzvi, P. Berghaus, D. Berley, E. Bernardini, A. Bernhard, D. Z. Besson, G. Binder, D. Bindig, M. Bissok, E. Blaufuss, S. Blot, C. Bohm, M. Boerner, F. Bos, D. Bose, S. Boeser, O. Botner, J. Braun, L. Brayeur, H. -P. Bretz, A. Burgman, T. Carver, M. Casier, E. Cheung, D. Chirkin, A. Christov, K. Clark, L. Classen, S. Coenders, G. H. Collin, J. M. Conrad, D. F. Cowen, R. Cross, M. Day, J. P. A. M. de Andre, C. De Clercq, E. del Pino Rosendo, H. Dembinski, S. De Ridder, P. Desiati, K. D. de Vries, G. de Wasseige, M. de With, T. DeYoung, J. C. Diaz-Velez, V. di Lorenzo, H. Dujmovic, J. P. Dumm, M. Dunkman, B. Eberhardt, T. Ehrhardt, B. Eichmann, P. Eller, S. Euler, P. A. Evenson, S. Fahey, A. R. Fazely, J. Feintzeig, J. Felde, K. Filimonov, C. Finley, S. Flis, C. -C. Foesig, A. Franckowiak, E. Friedman, T. Fuchs, T. K. Gaisser, J. Gallagher, L. Gerhardt, K. Ghorbani, W. Giang, L. Gladstone, M. Glagla, T. Gluesenkamp, A. Goldschmidt, G. Golup, J. G. Gonzalez, D. Grant, Z. Griffith, C. Haack, A. Haj Ismail, A. Hallgren, F. Halzen, E. Hansen, B. Hansmann, T. Hansmann, K. Hanson, D. Hebecker, D. Heereman, K. Helbing, R. Hellauer, S. Hickford, J. Hignight, G. C. Hill, K. D. Hoffman, R. Hoffmann, K. Holzapfel, K. Hoshina, F. Huang, M. Huber, K. Hultqvist, S. In, A. Ishihara, E. Jacobi, G. S. Japaridze, M. Jeong, K. Jero, B. J. P. Jones, M. Jurkovic, A. Kappes, T. Karg, A. Karle, U. Katz, M. Kauer, A. Keivani, J. L. Kelley, J. Kemp, A. Kheirandish, M. Kim, T. Kintscher, J. Kiryluk, T. Kittler, S. R. Klein, G. Kohnen, R. Koirala, H. Kolanoski, R. Konietz, L. Koepke, C. Kopper, S. Kopper, D. J. Koskinen, M. Kowalski, K. Krings, M. Kroll, G. Krueckl, C. Krueger, J. Kunnen, S. Kunwar, N. Kurahashi, T. Kuwabara, M. Labare, J. L. Lanfranchi, M. J. Larson, F. Lauber, D. Lennarz, M. Lesiak-Bzdak, M. Leuermann, J. Leuner, L. Lu, J. Luenemann, J. Madsen, G. Maggi, K. B. M. Mahn, S. Mancina, M. Mandelartz, R. Maruyama, K. Mase, R. Maunu, F. McNally, K. Meagher, M. Medici, M. Meier, A. Meli, T. Menne, G. Merino, T. Meures, S. Miarecki, L. Mohrmann, T. Montaruli, M. Moulai, R. Nahnhauer, U. Naumann, G. Neer, H. Niederhausen, S. C. Nowicki, D. R. Nygren, A. Obertacke Pollmann, A. Olivas, A. O'Murchadha, T. Palczewski, H. Pandya, D. V. Pankova, P. Peiffer, Oe. Penek, J. A. Pepper, C. Perez de los Heros, D. Pieloth, E. Pinat, P. B. Price, G. T. Przybylski, M. Quinnan, C. Raab, L. Raedel, M. Rameez, K. Rawlins, R. Reimann, B. Relethford, M. Relich, E. Resconi, W. Rhode, M. Richman, B. Riedel, S. Robertson, M. Rongen, C. Rott, T. Ruhe, D. Ryckbosch, D. Rysewyk, L. Sabbatini, S. E. Sanchez Herrera, A. Sandrock, J. Sandroos, S. Sarkar, K. Satalecka, M. Schimp, P. Schlunder, T. Schmidt, S. Schoenen, S. Schoeneberg, L. Schumacher, D. Seckel, S. Seunarine, D. Soldin, M. Song, G. M. Spiczak, C. Spiering, M. Stahlberg, T. Stanev, A. Stasik, A. Steuer, T. Stezelberger, R. G. Stokstad, A. Stoessl, R. Stroem, N. L. Strotjohann, G. W. Sullivan, M. Sutherland, H. Taavola, I. Taboada, J. Tatar, F. Tenholt, S. Ter-Antonyan, A. Terliuk, G. Tesic, S. Tilav, P. A. Toale, M. N. Tobin, S. Toscano, D. Tosi, M. Tselengidou, A. Turcati, E. Unger, M. Usner, J. Vandenbroucke, N. van Eijndhoven, S. Vanheule, M. van Rossem, J. van Santen, J. Veenkamp, M. Vehring, M. Voge, M. Vraeghe, C. Walck, A. Wallace, M. Wallraff, N. Wandkowsky, Ch. Weaver, M. J. Weiss, C. Wendt, S. Westerhoff, B. J. Whelan, S. Wickmann, K. Wiebe, C. H. Wiebusch, L. Wille, D. R. Williams, L. Wills, M. Wolf, T. R. Wood, E. Woolsey, K. Woschnagg, D. L. Xu, X. W. Xu, Y. Xu, J. P. Yanez, G. Yodh, S. Yoshida, M. Zoll
    ASTROPHYSICAL JOURNAL 833(1) 2016年12月  査読有り
    The IceCube Collaboration has previously discovered a high-energy astrophysical neutrino flux using neutrino events with interaction vertices contained within the instrumented volume of the IceCube detector. We present a complementary measurement using charged current muon neutrino events where the interaction vertex can be outside this volume. As a consequence of the large muon range the effective area is significantly larger but the field of view is restricted to the Northern Hemisphere. IceCube data from 2009 through 2015 have been analyzed using a likelihood approach based on the reconstructed muon energy and zenith angle. At the highest neutrino energies between 194 TeV and 7.8 PeV a significant astrophysical contribution is observed, excluding a purely atmospheric origin of these events at 5.6 sigma significance. The data are well described by an isotropic, unbroken power-law flux with a normalization at 100 TeV neutrino energy of (0.90(-0.27)(+0.30)) x 10(-18) GeV-1 cm(-2) s(-1) sr(-1) and a hard spectral index of gamma = 2.13 +/- 0.13. The observed spectrum is harder in comparison to previous IceCube analyses with lower energy thresholds which may indicate a break in the astrophysical neutrino spectrum of unknown origin. The highest-energy event observed has a reconstructed muon energy of (4.5 +/- 1.2) PeV which implies a probability of less than 0.005% for this event to be of atmospheric origin. Analyzing the arrival directions of all events with reconstructed muon energies above 200 TeV no correlation with known gamma-ray sources was found. Using the high statistics of atmospheric neutrinos we report the current best constraints on a prompt atmospheric muon neutrino flux originating from charmed meson decays which is below 1.06 in units of the flux normalization of the model in Enberg et al.
  • M. G. Aartsen, K. Abraham, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers, M. Ahrens, D. Altmann, K. Andeen, T. Anderson, I. Ansseau, G. Anton, M. Archinger, C. Arguelles, J. Auffenberg, S. Axani, X. Bai, S. W. Barwick, V. Baum, R. Bay, J. J. Beatty, J. Becker Tjus, K. -H. Becker, S. BenZvi, P. Berghaus, D. Berley, E. Bernardini, A. Bernhard, D. Z. Besson, G. Binder, D. Bindig, M. Bissok, E. Blaufuss, S. Blot, C. Bohm, M. Boerner, F. Bos, D. Bose, S. Boeser, O. Botner, J. Braun, L. Brayeur, H. -P. Bretz, A. Burgman, T. Carver, M. Casier, E. Cheung, D. Chirkin, A. Christov, K. Clark, L. Classen, S. Coenders, G. H. Collin, J. M. Conrad, D. F. Cowen, R. Cross, M. Day, J. P. A. M. de Andre, C. De Clercy, E. del Pino Rosendo, H. Dembinski, S. De Ridder, P. Desiati, K. D. de Vries, G. de Wasseige, M. de With, T. DeYoung, J. C. Diaz-Velez, V. di Lorenzo, H. Dujmovic, J. P. Dumm, M. Dunkman, B. Eberhardt, T. Ehrhardt, B. Eichmann, P. Eller, S. Euler, P. A. Evenson, S. Fahey, A. R. Fazely, J. Feintzeig, J. Felde, K. Filimonov, C. Finley, S. Flis, C. -C. Foesig, A. Franckowiak, E. Friedman, T. Fuchs, T. K. Gaisser, J. Gallagher, L. Gerhardt, K. Ghorbani, W. Giang, L. Gladstone, M. Glagla, T. Gluesenkamp, A. Goldschmidt, G. Golup, J. G. Gonzalez, D. Grant, Z. Griffith, C. Haack, A. Haj Ismail, A. Hallgren, F. Halzen, E. Hansen, B. Hansmann, T. Hansmann, K. Hanson, D. Hebecker, D. Heereman, K. Helbing, R. Hellauer, S. Hickford, J. Hignight, G. C. Hill, K. D. Hoffman, R. Hoffmann, K. Holzapfel, K. Hoshina, F. Huang, M. Huber, K. Hultqvist, S. In, A. Ishihara, E. Jacobi, G. S. Japaridze, M. Jeong, K. Jero, B. J. P. Jones, M. Jurkovic, A. Kappes, T. Karg, A. Karle, U. Katz, M. Kauer, A. Keivani, J. L. Kelley, J. Kemp, A. Kheirandish, M. Kim, T. Kintscher, J. Kiryluk, T. Kittler, S. R. Klein, G. Kohnen, R. Koirala, H. Kolanoski, R. Konietz, L. Koepke, C. Kopper, S. Kopper, D. J. Koskinen, M. Kowalski, K. Krings, M. Kroll, G. Krueckl, C. Krueger, J. Kunnen, S. Kunwar, N. Kurahashi, T. Kuwabara, M. Labare, J. L. Lanfranchi, M. J. Larson, F. Lauber, D. Lennarz, M. Lesiak-Bzdak, M. Leuermann, J. Leuner, L. Lu, J. Lunemann, J. Madsen, G. Maggi, K. B. M. Mahn, S. Mancina, M. Mandelartz, R. Maruyama, K. Mase, R. Maunu, F. McNally, K. Meagher, M. Medici, M. Meier, A. Meli, T. Menne, G. Merino, T. Meures, S. Miarecki, L. Mohrmann, T. Montaruli, M. Moulai, R. Nahnhauer, U. Naumann, G. Neer, H. Niederhausen, S. C. Nowicki, D. R. Nygren, A. Obertacke Pollmann, A. Olivas, A. O' Murchadha, T. Palczewski, H. Pandya, D. V. Pankova, O. Penek, J. A. Pepper, C. Perez de los Heros, D. Pieloth, E. Pinat, P. B. Price, G. T. Przybylski, M. Quinnan, C. Raab, L. Raedel, M. Rameez, K. Rawlins, R. Reimann, B. Relethford, M. Relich, E. Resconi, W. Rhode, M. Richman, B. Riedel, S. Robertson, M. Rongen, C. Rott, T. Ruhe, D. Ryckbosch, D. Rysewyk, L. Sabbatini, S. E. Sanchez Herrera, A. Sandrock, J. Sandroos, S. Sarkar, K. Satalecka, M. Schimp, P. Schlunder, T. Schmidt, S. Schoenen, S. Schoeneberg, L. Schumacher, D. Seckel, S. Seunarine, D. Soldin, M. Song, G. M. Spiczak, C. Spiering, M. Stahlberg, T. Stanev, A. Stasik, A. Steuer, T. Stezelberger, R. G. Stokstad, A. Stoessl, R. Stroem, N. L. Strotjohann, G. W. Sullivan, M. Sutherland, H. Taavola, I. Taboada, J. Tatar, F. Tenholt, S. Ter-Antonyan, A. Terliuk, G. Tesic, S. Tilav, P. A. Toale, M. N. Tobin, S. Toscano, D. Tosi, M. Tselengidou, A. Turcati, E. Unger, M. Usner, J. Vandenbroucke, N. van Eijndhoven, S. Vanheule, M. van Rossem, J. van Santen, J. Veenkamp, M. Vehring, M. Voge, M. Vraeghe, C. Walck, A. Wallace, M. Wallraff, N. Wandkowsky, Ch. Weaver, M. J. Weiss, C. Wendt, S. Westerhoff, B. J. Whelan, S. Wickmann, K. Wiebe, C. H. Wiebusch, L. Wille, D. R. Williams, L. Wills, M. Wolf, T. R. Wood, E. Woolsey, K. Woschnagg, D. L. Xu, X. W. Xu, Y. Xu, J. P. Yanez, G. Yodh, S. Yoshida, M. Zoll
    PHYSICAL REVIEW LETTERS 117(24) 2016年12月  査読有り
    We report constraints on the sources of ultrahigh-energy cosmic rays (UHECRs) above 10(9) GeV, based on an analysis of seven years of IceCube data. This analysis efficiently selects very high-energy neutrino-induced events which have deposited energies from 5 x 10(5) GeV to above 10(11) GeV. Two neutrino-induced events with an estimated deposited energy of (2.6 +/- 0.3) x 10(6) GeV, the highest neutrino energy observed so far, and (7.7 +/- 2.0) x 10(5) GeV were detected. The atmospheric background-only hypothesis of detecting these events is rejected at 3.6 sigma. The hypothesis that the observed events are of cosmogenic origin is also rejected at > 99% CL because of the limited deposited energy and the nonobservation of events at higher energy, while their observation is consistent with an astrophysical origin. Our limits on cosmogenic neutrino fluxes disfavor the UHECR sources having a cosmological evolution stronger than the star formation rate, e.g., active galactic nuclei and gamma-ray bursts, assuming proton-dominated UHECRs. Constraints on UHECR sources including mixed and heavy UHECR compositions are obtained for models of neutrino production within UHECR sources. Our limit disfavors a significant part of parameter space for active galactic nuclei and new-born pulsar models. These limits on the ultrahigh-energy neutrino flux models are the most stringent to date.

MISC

 2

所属学協会

 1

共同研究・競争的資金等の研究課題

 22