研究者業績

前田 瞬

マエタ シュン  (Shun Maeta)

基本情報

所属
千葉大学 教育学部 数学教育講座 / (兼任) 大学院 融合理工学府 数学・情報数理学コース 准教授
学位
博士(情報科学)(東北大学)

研究者番号
00709644
J-GLOBAL ID
201201056442594529
researchmap会員ID
B000222012

外部リンク

研究キーワード

 2

論文

 29
  • Shun Maeta
    2024年5月7日  
    In this paper, we completely classify nontrivial nonflat three dimensional complete shrinking and steady gradient Yamabe solitons without any assumptions. We also give examples of complete expanding gradient Yamabe solitons. Furthermore, we give a proof of the classification of nontrivial two dimensional complete gradient Yamabe solitons without any assumptions.
  • Shun Maeta
    Proceedings of the Edinburgh Mathematical Society 67(2) 336-348 2024年3月7日  
    Abstract We consider the broadest concept of the gradient Yamabe soliton, the conformal gradient soliton. In this paper, we elucidate the structure of complete gradient conformal solitons under some assumption, and provide some applications to gradient Yamabe solitons. These results enhance the understanding gained from previous research. Furthermore, we give an affirmative partial answer to the Yamabe soliton version of Perelman’s conjecture.
  • Burcu Bektaş Demirci, Shunya Fujii, Shun Maeta
    Journal of Geometry 2024年1月12日  
  • Antonio W. Cunha, Eudes L. de Lima, Henrique F. de Lima, Shun Maeta
    Advances in Geometry (to appear) 2024年  
  • Shun Maeta
    2023年9月17日  
    In this paper, we solve the Yamabe soliton version of the Perelman conjecture. We show that any nontrivial complete steady gradient Yamabe solitons with positive scalar curvature are rotationally symmetric.
  • Shun Maeta
    Information Geometry 4(2) 313-327 2021年12月  査読有り
  • Shun Maeta
    arXiv:2107.05487 2021年7月12日  
  • Yu Fu, Shun Maeta, Ye-Lin Ou
    Mathematische Nachrichten 294(9) 1724-1741 2021年7月  査読有り
  • Tomoya Miura, Shun Maeta
    Advances in Geometry 21(2) 163-168 2021年4月27日  査読有り
    <title>Abstract</title> We show that any triharmonic Riemannian submersion from a 3-dimensional space form into a surface is harmonic. This is an affirmative partial answer to the submersion version of the generalized Chen conjecture. Moreover, a non-existence theorem for <italic>f</italic> -biharmonic Riemannian submersions is also presented.
  • Shunya Fujii, Shun Maeta
    International Journal of Mathematics 32(4) 12pp 2021年3月  査読有り
    In this paper, we consider generalized Yamabe solitons which include many notions, such as Yamabe solitons, almost Yamabe solitons, [Formula: see text]-almost Yamabe solitons, gradient [Formula: see text]-Yamabe solitons and conformal gradient solitons. We completely classify the generalized Yamabe solitons on hypersurfaces in Euclidean spaces arisen from the position vector field.
  • Shun Maeta
    Annals of Global Analysis and Geometry 58(2) 227-237 2020年9月  査読有り
  • Shun Maeta, Ye-Lin Ou
    Pacific Journal of Mathematics 306(1) 281-290 2020年6月14日  査読有り
  • Shun Maeta
    Differential Geometry and its Applications 66 75-81 2019年10月  査読有り
  • Tatsuya Seko, Shun Maeta
    Journal of Geometry and Physics 136 97-103 2019年2月  査読有り
  • Yong Luo, Shun Maeta
    Proceedings of the American Mathematical Society 145(7) 3109-3116 2017年2月28日  査読有り
  • Maeta Shun
    Proceedings of the American Mathematical Society 145(4) 1773-1779 2016年10月13日  査読有り
  • Maeta Shun
    International journal of mathematics 27(11) 15pp 2016年10月  査読有り
  • Shun Maeta, Nobumitsu Nakauchi, Hajime Urakawa
    Monatshefte für Mathematik 177(4) 551-567 2015年8月  査読有り
  • Shun Maeta
    Houston Journal of Mathematics 41(2) 433-444 2015年  査読有り
    Theory of harmonic maps has been applied into various fields in differential geometry. By extending the notion of harmonic maps, J. Eel Is and L. Lemaire introduced polyharmonic maps of order k. In 1989, S. B. Wang showed the Euler Lagrange equation of polyharmonic maps of order 3 (triharmonic maps). In this paper, we study triharmonic immersion into a sphere. We show the necessary and sufficient condition of triharmonic isometric immersion such that Sigma(m)(s, t=1) del 1/UB(e(s), e(t)) = 0, for all vector field U, and give some non trivial examples. Moreover, we also construct non harmonic triharmonic maps.
  • Shun Maeta
    Journal of Geometry 105(3) 507-527 2014年12月  査読有り
  • Shun Maeta
    Proceedings of the American Mathematical Society 143(5) 2227-2234 2014年11月24日  査読有り
    <p>We consider polyharmonic maps <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi colon left-parenthesis upper M comma g right-parenthesis right-arrow double-struck upper E Superscript n"> <mml:semantics> <mml:mrow> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mo>:</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>,</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">E</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">\phi :(M,g)\rightarrow \mathbb {E}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of order <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding="application/x-tex">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> from a complete Riemannian manifold into the Euclidean space and let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a real constant satisfying <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2 less-than-or-equal-to p greater-than normal infinity"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">2\leq p&gt;\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis i right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>i</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(i)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> If <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="integral Underscript upper M Endscripts StartAbsoluteValue upper W Superscript k minus 1 Baseline EndAbsoluteValue Superscript p Baseline d v Subscript g Baseline greater-than normal infinity"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mi>M</mml:mi> </mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:msup> <mml:mi>W</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>k</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> <mml:mi>d</mml:mi> <mml:msub> <mml:mi>v</mml:mi> <mml:mi>g</mml:mi> </mml:msub> <mml:mo>&gt;</mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\int _M|W^{k-1}|^{p}dv_g&gt;\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="integral Underscript upper M Endscripts StartAbsoluteValue ModifyingAbove nabla With bar upper W Superscript k minus 2 Baseline EndAbsoluteValue squared d v Subscript g Baseline greater-than normal infinity comma"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mi>M</mml:mi> </mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mover> <mml:mi mathvariant="normal">∇<!-- ∇ --></mml:mi> <mml:mo accent="false">¯<!-- ¯ --></mml:mo> </mml:mover> <mml:msup> <mml:mi>W</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>k</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:mi>d</mml:mi> <mml:msub> <mml:mi>v</mml:mi> <mml:mi>g</mml:mi> </mml:msub> <mml:mo>&gt;</mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\int _M|\overline \nabla W^{k-2}|^2dv_g&gt;\infty ,</mml:annotation> </mml:semantics> </mml:math> </inline-formula> then <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi"> <mml:semantics> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:annotation encoding="application/x-tex">\phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a polyharmonic map of order <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k minus 1"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">k-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis i i right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>i</mml:mi> <mml:mi>i</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(ii)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> If <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="integral Underscript upper M Endscripts StartAbsoluteValue upper W Superscript k minus 1 Baseline EndAbsoluteValue Superscript p Baseline d v Subscript g Baseline greater-than normal infinity"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mi>M</mml:mi> </mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:msup> <mml:mi>W</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>k</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> <mml:mi>d</mml:mi> <mml:msub> <mml:mi>v</mml:mi> <mml:mi>g</mml:mi> </mml:msub> <mml:mo>&gt;</mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\int _M|W^{k-1}|^{p}dv_g&gt;\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="Vol left-parenthesis upper M comma g right-parenthesis equals normal infinity"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext>Vol</mml:mtext> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>,</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\textrm {Vol}(M,g)=\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi"> <mml:semantics> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:annotation encoding="application/x-tex">\phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a polyharmonic map of order <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k minus 1"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">k-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Here, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper W Superscript s Baseline equals normal upper Delta overbar Superscript s minus 1 Baseline tau left-parenthesis phi right-parenthesis left-parenthesis s equals 1 comma 2 comma midline-horizontal-ellipsis right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>W</mml:mi> <mml:mi>s</mml:mi> </mml:msup> <mml:mo>=</mml:mo> <mml:msup> <mml:mover> <mml:mi mathvariant="normal">Δ<!-- Δ --></mml:mi> <mml:mo accent="false">¯<!-- ¯ --></mml:mo> </mml:mover> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>s</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mi>τ<!-- τ --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mtext> </mml:mtext> <mml:mo stretchy="false">(</mml:mo> <mml:mi>s</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mo>⋯<!-- ⋯ --></mml:mo> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">W^s=\overline \Delta ^{s-1}\tau (\phi )\ (s=1,2,\cdots )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper W Superscript 0 Baseline equals phi"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>W</mml:mi> <mml:mn>0</mml:mn> </mml:msup> <mml:mo>=</mml:mo> <mml:mi>ϕ<!-- ϕ --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">W^0=\phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. As a corollary, we give an affirmative partial answer to the generalized Chen conjecture.</p>
  • Shun Maeta
    Annals of Global Analysis and Geometry 46(1) 75-85 2014年6月  査読有り
  • Shun Maeta
    Advances in Mathematics 253 139-151 2014年3月  査読有り
  • Kazuo Akutagawa, Shun Maeta
    Geometriae Dedicata 164(1) 351-355 2013年6月  査読有り
  • SHUN MAETA, HAJIME URAKAWA
    Glasgow Mathematical Journal 55(2) 465-480 2013年5月  査読有り
    <title>Abstract</title>We give the necessary and sufficient conditions for Lagrangian submanifolds in Kähler manifolds to be biharmonic. We classify biharmonic PNMC Lagrangian <italic>H</italic>-umbilical submanifolds in the complex space forms. Furthermore, we classify biharmonic PNMC Lagrangian surfaces in the two-dimensional complex space forms.
  • Shun Maeta
    Osaka Journal of Mathematics 49(4) 1035-1063 2012年12月  査読有り
    In [4], J. Eells and L. Lemaire introduced k-energy and k-harmonic maps. In 1989, S.B. Wang [17] showed the first variation formula of the k-energy. In this paper, we give the second variation formula of k-energy and a notion of weakly stable and unstable. We also study k-harmonic maps into product Riemannian manifolds and k-harmonic curves into Riemannian manifolds with constant sectional curvature. Moreover, we give some non-trivial solutions of 3-harmonic curves.
  • Shun Maeta
    Journal of Geometry and Physics 62(11) 2288-2293 2012年11月  査読有り
  • Shun Maeta
    Proceedings of the American Mathematical Society 140(5) 1835-1847 2012年5月  査読有り
  • Shun Maeta
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS 17(1) 70-77 2012年4月  査読有り
    B.Y. Chen introduced biharmonic submanifolds in Euclidean spaces and raised the conjecture "Any biharmonic submanifold is minimal". In this article, we show some affirmative partial answers of generalized Chen's conjecture. Especially, we show that the triharmonic hyper-surfaces with constant mean curvature are minimal.

MISC

 2

講演・口頭発表等

 19

担当経験のある科目(授業)

 56

所属学協会

 1

共同研究・競争的資金等の研究課題

 5