大学院工学研究院

角江 崇

カクエ タカシ  (Takashi Kakue)

基本情報

所属
千葉大学 大学院工学研究院 准教授
学位
博士(工学)(2012年3月 京都工芸繊維大学)

J-GLOBAL ID
201901016891017366
researchmap会員ID
B000349387

論文

 298

MISC

 298

講演・口頭発表等

 71
  • 23rd International Display Workshops in conjunction with Asia Display, IDW/AD 2016 2018年1月1日
    copyright © 2016 Society of Information Display. All rights reserved. We propose high-speed computer-generated hologram reproduction using digital mirror device for high-definition spatiotemporal division multiplexing electro-holography. Finally, we succeeded to play high-definition 3-D movie of 3-D object comprised about 900,000 points at 60 fps when each frame was divided into twelve.
  • 23rd International Display Workshops in conjunction with Asia Display, IDW/AD 2016 2018年1月1日
  • Proceedings of SPIE - The International Society for Optical Engineering 2018年1月1日
    © 2018 SPIE. To further accelerate the calculations associated with point-cloud-based holograms, wavelet shrinkage-based superpositIon (WASABI) has been proposed. Wavelet shrinkage eliminates the small wavelet coecient values of the light distribution emitted from a point cloud, resulting in an approximated light distribution calculated from a few representative wavelet coecients. Although WASABI can accelerate the hologram calculations, the approximated light distribution tends to lose the high-frequency components. To address this issue, random sampling was applied to the light distribution.
  • 23rd International Display Workshops in conjunction with Asia Display, IDW/AD 2016 2018年1月1日
    copyright © 2016 Society of Information Display. All rights reserved. The combination of the random phase-free method and Gerchberg-Saxton (GS) algorithm succeeded in improving the image quality of holograms. However, the GS algorithm takes a long computation time. In this research, we propose faster methods for the image quality improvement of the random phase-free hologram.
  • 23rd International Display Workshops in conjunction with Asia Display, IDW/AD 2016 2018年1月1日
    copyright © 2016 Society of Information Display. All rights reserved. We accelerated hologram generation based on raysampling plane by a graphics processing unit (GP U). The computational time by a central processing unit (CPU) was 56.02 seconds, while that by a GPU was 0.3764 seconds. We achieved to generate a 3072×3072-pixels hologram by the GPU approximately 150 times faster than the CPU.

共同研究・競争的資金等の研究課題

 11

産業財産権

 5