研究者業績

村田 武士

ムラタ タケシ  (Murata Takeshi)

基本情報

所属
千葉大学 大学院理学研究院化学研究部門 教授
学位
博士(工学)(2000年3月 東京理科大学)

J-GLOBAL ID
201501016971458542
researchmap会員ID
B000249041

外部リンク

主要な経歴

 13

受賞

 11

論文

 162
  • Masao Inoue, Tomohiko Hayashi, Satoshi Yasuda, Minoru Kato, Mitsunori Ikeguchi, Takeshi Murata, Masahiro Kinoshita
    The journal of physical chemistry. B 128(41) 10110-10125 2024年10月17日  
    Privalov and co-workers estimated the changes in hydration enthalpy and entropy upon ubiquitin unfolding and their temperature dependences denoted by ΔHhyd(T) and ΔShyd(T), respectively, from experimentally measured enthalpies and entropies of transfer of various model compounds from gaseous phase to water. We calculate ΔHhyd(T) and ΔShyd(T) for ubiquitin by our statistical-mechanics theory where molecular and atomistic models are employed for water and protein structure, respectively. ΔHhyd(T) and ΔShyd(T) calculated are in remarkably good agreement with those estimated by Privalov and co-workers. By examining relative magnitudes and signs of the changes in a variety of constituents of ΔHhyd(T) and ΔShyd(T), we confirm that the hydrophobic effect is an essential force driving a protein to fold. Detailed and comprehensive explanations are given for our claim that the prevailing views of the hydrophobic effect are not capable of elucidating its weakening at low temperatures, whereas our updated view is. We find out problematic points of the changes in enthalpy and entropy upon protein unfolding denoted by ΔH°(T) and ΔS°(T), respectively, which are measured using the differential scanning calorimetry at low pH, suggesting a theoretical method of calculating ΔH°(T) and ΔS°(T) at pH ∼ 7.
  • Yasuomi Miyashita, Toshio Moriya, Takafumi Kato, Masato Kawasaki, Satoshi Yasuda, Naruhiko Adachi, Kano Suzuki, Satoshi Ogasawara, Tetsuichiro Saito, Toshiya Senda, Takeshi Murata
    Structure (London, England : 1993) 2024年9月18日  
    During drug discovery, it is crucial to exclude compounds with toxic effects. The human ether-à-go-go-related gene (hERG) channel is essential for maintaining cardiac repolarization and is a critical target in drug safety evaluation due to its role in drug-induced arrhythmias. Inhibition of the hERG channel can lead to severe cardiac issues, including Torsades de Pointes tachycardia. Understanding hERG inhibition mechanisms is essential to avoid these toxicities. Several structural studies have elucidated the interactions between inhibitors and hERG. However, orientation and resolution issues have so far limited detailed insights. Here, we used digitonin to analyze the apo state of hERG, which resolved orientation issues and improved the resolution. We determined the structure of hERG bound to astemizole, showing a clear map in the pore pathway. Using this strategy, we also analyzed the binding modes of E-4031 and pimozide. These insights into inhibitor interactions with hERG may aid safer drug design and enhance cardiac safety.
  • Tomohiro Ishizuka, Kano Suzuki, Masae Konno, Keisei Shibata, Yuma Kawasaki, Hidefumi Akiyama, Takeshi Murata, Keiichi Inoue
    Journal of Biological Chemistry 107797-107797 2024年9月  
  • Hiroshi Ueno, Kiyoto Yasuda, Norie Hamaguchi-Suzuki, Riku Marui, Naruhiko Adachi, Toshiya Senda, Takeshi Murata, Hiroyuki Noji
    2024年8月27日  
  • Tomohiko Hayashi, Masato Kawamura, Shunsuke Miyamoto, Satoshi Yasuda, Takeshi Murata, Masahiro Kinoshita
    Journal of Molecular Liquids 406 124989-124989 2024年7月  査読有り
  • Ichie Ojiro, Hibiki Katsuyama, Ryusei Kaneko, Satoshi Ogasawara, Takeshi Murata, Yuko Terada, Keisuke Ito
    PLOS ONE 19(6) e0306029-e0306029 2024年6月25日  査読有り
    Humans have approximately 400 different olfactory receptors (hORs) and recognize odorants through the repertoire of hOR responses. Although the cell surface expression of hORs is critical to evaluate their response, hORs are poorly expressed on the surface of heterologous cells. To address this problem, previous studies have focused on hOR transportation to the membrane. Nevertheless, the response pattern of hORs to odorants has yet to be successfully linked, and the response sensitivity still remains to be improved. In this study, we demonstrate that increasing the transcriptional level can result in a significant increase in cell surface and functional expression of hORs. We used the TAR-Tat system, which increases the transcription efficiency through positive feedback, and found that OR1A1, OR6N2, and OR51M1 exhibited robust expression. Moreover, this system induces enhanced hOR responses to odorants, thus defining four hORs as novel n-hexanal receptors and n-hexanal is an inverse agonist to one of them. Our results suggested that using the TAR-Tat system and increasing the transcriptional level of hORs can help understanding the relationship between hORs and odorants that were previously undetectable. This finding could facilitate the understanding of the sense of smell by decoding the repertoire of hOR responses.
  • Norie Hamaguchi-Suzuki, Naruhiko Adachi, Toshio Moriya, Satoshi Yasuda, Masato Kawasaki, Kano Suzuki, Satoshi Ogasawara, Naohiko Anzai, Toshiya Senda, Takeshi Murata
    Biochemical and Biophysical Research Communications 2024年5月  査読有り最終著者責任著者
  • Koya Sakuma, Naohiro Kobayashi, Toshihiko Sugiki, Toshio Nagashima, Toshimichi Fujiwara, Kano Suzuki, Naoya Kobayashi, Takeshi Murata, Takahiro Kosugi, Rie Tatsumi-Koga, Nobuyasu Koga
    Nature Structural & Molecular Biology 2024年2月  査読有り
    Abstract A wide range of de novo protein structure designs have been achieved, but the complexity of naturally occurring protein structures is still far beyond these designs. To expand the diversity and complexity of de novo designed protein structures, we sought to develop a method for designing “difficult-to-describe”α-helical protein structures composed of irregularly aligned α-helices like globins. Backbone structure libraries consisting of a myriad of α-helical structures with 5- or 6-helices were generated by combining 18 helix-loop-helix motifs and canonical α-helices, and five distinct topologies were selected for de novo design. The designs were found to be monomeric with high thermal stability in solution and fold into the target topologies with atomic accuracy. This study demonstrated that complicated α-helical proteins are created using typical building blocks. The method we developed would enable us to explore the universe of protein structures for designing novel functional proteins.
  • Muhammad Fathul Ihsan, Daisuke Kawashima, Songshi Li, Satoshi Ogasawara, Takeshi Murata, Masahiro Takei
    Lab on a Chip 24(12) 3183-3190 2024年  査読有り
    Non-invasive hERG channel screening is achieved by integrating electrical impedance tomography (EIT) and extracellular voltage activation (EVA) into a PCB sensor.
  • Yongchan Lee, Chunhuan Jin, Ryuichi Ohgaki, Minhui Xu, Satoshi Ogasawara, Rangana Warshamanage, Keitaro Yamashita, Garib Murshudov, Osamu Nureki, Takeshi Murata, Yoshikatsu Kanai
    2023年12月3日  
  • Raymond N. Burton-Smith, Chihong Song, Hiroshi Ueno, Takeshi Murata, Ryota Iino, Kazuyoshi Murata
    Communications Biology 6(1) 755-755 2023年7月28日  査読有り
    Abstract The vacuolar-type ATPase from Enterococcus hirae (EhV-ATPase) is a thus-far unique adaptation of V-ATPases, as it performs Na+ transport and demonstrates an off-axis rotor assembly. Recent single molecule studies of the isolated V1 domain have indicated that there are subpauses within the three major states of the pseudo three-fold symmetric rotary enzyme. However, there was no structural evidence for these. Herein we activate the EhV-ATPase complex with ATP and identified multiple structures consisting of a total of six states of this complex by using cryo-electron microscopy. The orientations of the rotor complex during turnover, especially in the intermediates, are not as perfectly uniform as expected. The densities in the nucleotide binding pockets in the V1 domain indicate the different catalytic conditions for the six conformations. The off-axis rotor and its’ interactions with the stator a-subunit during rotation suggests that this non-uniform rotor rotation is performed through the entire complex.
  • Fuhito Nakagawa, Marin Kikkawa, Sisi Chen, Yasuomi Miyashita, Norie Hamaguchi-Suzuki, Minami Shibuya, Soichi Yamashita, Lisa Nagase, Satoshi Yasuda, Mitsunori Shiroishi, Toshiya Senda, Keisuke Ito, Takeshi Murata, Satoshi Ogasawara
    Scientific Reports 13(1) 2023年7月19日  査読有り責任著者
    Abstract Nanodisc technology has dramatically advanced the analysis of molecular interactions for membrane proteins. A nanodisc is designed as a vehicle for membrane proteins that provide a native-like phospholipid environment and better thermostability in a detergent-free buffer. This enables the determination of the thermodynamic and kinetic parameters of small molecule binding by surface plasmon resonance. In this study, we generated a nanodisc specific anti-MSP (membrane scaffold protein) monoclonal antibody biND5 for molecular interaction analysis of nanodiscs. The antibody, biND5 bound to various types of nanodiscs with sub-nanomolar to nanomolar affinity. Epitope mapping analysis revealed specific recognition of 8 amino acid residues in the exposed helix-4 structure of MSP. Further, we performed kinetics binding analysis between adenosine A2a receptor reconstituted nanodiscs and small molecule antagonist ZM241385 using biND5 immobilized sensor chips. These results show that biND5 facilitates the molecular interaction kinetics analysis of membrane proteins substituted in nanodiscs.
  • Rika Suzuki, Toshio Nagashima, Keiichi Kojima, Reika Hironishi, Masafumi Hirohata, Tetsuya Ueta, Takeshi Murata, Toshio Yamazaki, Yuki Sudo, Hideo Takahashi
    Journal of the American Chemical Society 2023年7月6日  査読有り
  • Satoshi Yasuda, Tomohiko Hayashi, Takeshi Murata, Masahiro Kinoshita
    Frontiers in Molecular Biosciences 10 2023年6月9日  査読有り責任著者
    We aim to develop a theory based on a concept other than the chemo-mechanical coupling (transduction of chemical free energy of ATP to mechanical work) for an ATP-driven protein complex. Experimental results conflicting with the chemo-mechanical coupling have recently emerged. We claim that the system comprises not only the protein complex but also the aqueous solution in which the protein complex is immersed and the system performs essentially no mechanical work. We perform statistical-mechanical analyses on V1-ATPase (the A3B3DF complex) for which crystal structures in more different states are experimentally known than for F1-ATPase (the α3β3γ complex). Molecular and atomistic models are employed for water and the structure of V1-ATPase, respectively. The entropy originating from the translational displacement of water molecules in the system is treated as a pivotal factor. We find that the packing structure of the catalytic dwell state of V1-ATPase is constructed by the interplay of ATP bindings to two of the A subunits and incorporation of the DF subunit. The packing structure represents the nonuniformity with respect to the closeness of packing of the atoms in constituent proteins and protein interfaces. The physical picture of rotation mechanism of F1-ATPase recently constructed by Kinoshita is examined, and common points and differences between F1- and V1-ATPases are revealed. An ATP hydrolysis cycle comprises binding of ATP to the protein complex, hydrolysis of ATP into ADP and Pi in it, and dissociation of ADP and Pi from it. During each cycle, the chemical compounds bound to the three A or β subunits and the packing structure of the A3B3 or α3β3 complex are sequentially changed, which induces the unidirectional rotation of the central shaft for retaining the packing structure of the A3B3DF or α3β3γ complex stabilized for almost maximizing the water entropy. The torque driving the rotation is generated by water with no input of chemical free energy. The presence of ATP is indispensable as a trigger of the torque generation. The ATP hydrolysis or synthesis reaction is tightly coupled to the rotation of the central shaft in the normal or inverse direction through the water-entropy effect.
  • Kazuhiro Kobayashi, Kouki Kawakami, Tsukasa Kusakizako, Atsuhiro Tomita, Michihiro Nishimura, Kazuhiro Sawada, Hiroyuki H Okamoto, Suzune Hiratsuka, Gaku Nakamura, Riku Kuwabara, Hiroshi Noda, Hiroyasu Muramatsu, Masaru Shimizu, Tomohiko Taguchi, Asuka Inoue, Takeshi Murata, Osamu Nureki
    Nature 618(7967) 1085-1093 2023年6月7日  査読有り責任著者
    G protein-coupled receptors (GPCRs) generally accommodate specific ligands in the orthosteric-binding pockets. Ligand binding triggers a receptor allosteric conformational change that leads to the activation of intracellular transducers, G proteins and β-arrestins. Because these signals often induce adverse effects, the selective activation mechanism for each transducer must be elucidated. Thus, many orthosteric-biased agonists have been developed, and intracellular-biased agonists have recently attracted broad interest. These agonists bind within the receptor intracellular cavity and preferentially tune the specific signalling pathway over other signalling pathways, without allosteric rearrangement of the receptor from the extracellular side1-3. However, only antagonist-bound structures are currently available1,4-6, and there is no evidence to support that biased agonist binding occurs within the intracellular cavity. This limits the comprehension of intracellular-biased agonism and potential drug development. Here we report the cryogenic electron microscopy structure of a complex of Gs and the human parathyroid hormone type 1 receptor (PTH1R) bound to a PTH1R agonist, PCO371. PCO371 binds within an intracellular pocket of PTH1R and directly interacts with Gs. The PCO371-binding mode rearranges the intracellular region towards the active conformation without extracellularly induced allosteric signal propagation. PCO371 stabilizes the significantly outward-bent conformation of transmembrane helix 6, which facilitates binding to G proteins rather than β-arrestins. Furthermore, PCO371 binds within the highly conserved intracellular pocket, activating 7 out of the 15 class B1 GPCRs. Our study identifies a new and conserved intracellular agonist-binding pocket and provides evidence of a biased signalling mechanism that targets the receptor-transducer interface.
  • 伊藤光二, 原口武士, 玉那覇正典, 鈴木花野, 村田武士
    生物物理 63(2) 91-96 2023年3月25日  査読有り招待有り
  • Songshi Li, Daisuke Kawashima, Kennedy Omondi Okeyo, Takeshi Murata, Masahiro Takei
    Measurement Science and Technology 34(3) 035701-035701 2023年3月1日  査読有り
    Abstract The assessment method of anisotropic transmembrane transport coefficient vector P of a cell-spheroid under inhomogeneous ion concentration fields has been proposed by combining electrical impedance tomography (EIT) with an ion transport model to evaluate the anisotropic transmembrane transport of ions. An element Pi of P represents the transmembrane transport coefficient of the ith part of the cell membrane, which is assessed by the ion transport model from the average conductivity σ̃i of the ith extracellular sector reconstructed by EIT. Anisotropic factor H obtained from Pi is introduced, which represents the anisotropic transmembrane transport. To validate our methodology, the inhomogeneous ion concentration fields are generated by injecting two tonicity-different sucrose solutions (isotonic, hypotonic or hypertonic) from both sides of the cell-spheroid. As a result, the inhomogeneous ion concentration distribution due to the anisotropic transmembrane transport is successfully observed from the reconstructed image by EIT. The anisotropic factor H shows that H = 0.34 ± 0.24 in isotonic and hypertonic combination, H = 0.58 ± 0.15 in isotonic and hypotonic combination and H = 0.23 ± 0.06 in hypertonic and hypotonic combination, respectively. To verify the results obtained by our methodology, the fluorescence ratio F [-] of potassium ions around the cell-spheroid is observed under three combinations as same as the EIT measurement. F shows the anisotropic transmembrane transport with the same trend with the EIT results.
  • Takeshi Murata
    Biophysics and Physicobiology 2023年  
  • 浅井樹, 村田武士
    クライオ電顕顕微鏡ハンドブック 197-204 2023年  招待有り最終著者
  • Yuya Nishida, Sachiko Yanagisawa, Rikuri Morita, Hideki Shigematsu, Kyoko Shinzawa-Itoh, Hitomi Yuki, Satoshi Ogasawara, Ken Shimuta, Takashi Iwamoto, Chisa Nakabayashi, Waka Matsumura, Hisakazu Kato, Chai Gopalasingam, Takemasa Nagao, Tasneem Qaqorh, Yusuke Takahashi, Satoru Yamazaki, Katsumasa Kamiya, Ryuhei Harada, Nobuhiro Mizuno, Hideyuki Takahashi, Yukihiro Akeda, Makoto Ohnishi, Yoshikazu Ishii, Takashi Kumasaka, Takeshi Murata, Kazumasa Muramoto, Takehiko Tosha, Yoshitsugu Shiro, Teruki Honma, Yasuteru Shigeta, Minoru Kubo, Seiji Takashima, Yasunori Shintani
    Nature Communications 13(1) 7591 2022年12月8日  査読有り
    Abstract Antimicrobial resistance (AMR) is a global health problem. Despite the enormous efforts made in the last decade, threats from some species, including drug-resistant Neisseria gonorrhoeae, continue to rise and would become untreatable. The development of antibiotics with a different mechanism of action is seriously required. Here, we identified an allosteric inhibitory site buried inside eukaryotic mitochondrial heme-copper oxidases (HCOs), the essential respiratory enzymes for life. The steric conformation around the binding pocket of HCOs is highly conserved among bacteria and eukaryotes, yet the latter has an extra helix. This structural difference in the conserved allostery enabled us to rationally identify bacterial HCO-specific inhibitors: an antibiotic compound against ceftriaxone-resistant Neisseria gonorrhoeae. Molecular dynamics combined with resonance Raman spectroscopy and stopped-flow spectroscopy revealed an allosteric obstruction in the substrate accessing channel as a mechanism of inhibition. Our approach opens fresh avenues in modulating protein functions and broadens our options to overcome AMR.
  • Hidetsugu Asada, Dohyun Im, Yunhon Hotta, Satoshi Yasuda, Takeshi Murata, Ryoji Suno, So Iwata
    Structure (London, England : 1993) 30(12) 1582-1589 2022年12月1日  査読有り
    Orexin receptors are a family of G protein-coupled receptors that consist of two subtypes: orexin-1 receptors (OX1Rs) and OX2Rs. They are expressed throughout the central nervous system and are involved in regulating the sleep-wake cycle. The development of antagonists to orexin receptors has become important in drug discovery because modulation of these receptors can lead to novel treatments for diseases related to the regulation of sleep and wakefulness, such as insomnia. In this study, we determined that the structure of OX2R bound to lemborexant, a dual orexin receptor antagonist (DORA), at 2.89 Å resolution. Comparisons of kinetic and dynamic properties of DORAs based on structures and simulations suggest that the enthalpy of molecular binding to receptors and the entropy derived from intramolecular structure can be separately controlled. These results complement existing structural information and allow us to discuss the usefulness of pharmacophore models and target selectivity to OXRs.
  • Taisei Yamamoto, Satoshi Yasuda, Rinshi S. Kasai, Ryosuke Nakano, Simon Hikiri, Kanna Sugaya, Tomohiko Hayashi, Satoshi Ogasawara, Mitsunori Shiroishi, Takahiro K. Fujiwara, Masahiro Kinoshita, Takeshi Murata
    Protein Science 31(10) e4425 2022年10月  査読有り最終著者責任著者
  • Kanna Sugaya, Satoshi Yasuda, Shingo Sato, Chen Sisi, Taisei Yamamoto, Daisuke Umeno, Tomoaki Matsuura, Tomohiko Hayashi, Satoshi Ogasawara, Masahiro Kinoshita, Takeshi Murata
    Protein Science 31(9) e4404 2022年9月  査読有り最終著者責任著者
  • Yu Sakurai, Nodoka Abe, Keito Yoshikawa, Ryotaro Oyama, Satoshi Ogasawara, Takeshi Murata, Yuta Nakai, Kota Tange, Hiroki Tanaka, Hidetaka Akita
    Journal of Controlled Release 349 379-387 2022年9月  査読有り
    Lymphatic endothelial cells (LECs) that form lymphatic vessels play a pivotal role in immune regulation. It was recently reported that LECs suppress the antigen-dependent anti-tumor immunity in cancer tissues. Thus, regulating the function of LECs is a promising strategy for cancer therapy. The objective of this study was to develop a method for the selective delivery of small interfering RNA (siRNA) to LECs. For this purpose, the siRNA was formulated into nanoparticles (LNPs) to prevent them from being degraded in body fluids and to facilitate their penetration of the cell membrane. A breakthrough technology for achieving this is ONPATTRO®, a world's first siRNA drug. Since LNPs are taken up by hepatocytes relatively well via low-density lipoprotein receptors, most of the LNP systems that have been developed so far target hepatocytes. In this study, we report on the development of a new method for the rapid and convenient method for modifying LNPs with antibodies using the CLick reaction on the Interface of the nanoParticle (CLIP). The CLIP approach was faster and more versatile than the conventional method using amide coupling. As a demonstration, we report on the LEC-targeted siRNA delivery by using antibody-modified LNPs both in vitro and in vivo. The method used for the modification of LNPs is highly promising and has the potential for expanding the LNP-based delivery of nucleic acids in the future.
  • Shekhar, M., Gupta, C., Suzuki, K., Chan, C.K., Murata, T., Singharoy, A.
    ACS Central Science 8(7) 915-925 2022年7月27日  査読有り責任著者
  • Akihiro Otomo, Tatsuya Iida, Yasuko Okuni, Hiroshi Ueno, Takeshi Murata, Ryota Iino
    bioRxiv 119(42) e2210204119 2022年6月16日  
  • Kano Suzuki, María del Carmen Marín, Masae Konno, Reza Bagherzadeh, Takeshi Murata, Keiichi Inoue
    Journal of Biological Chemistry 298(3) 101722-101722 2022年3月  査読有り責任著者
    DTG/DTS rhodopsin, which was named based on a three residue motif (DTG or DTS) that is important for its function, is a light-driven proton-pumping microbial rhodopsin using a retinal chromophore. In contrast to other light-driven ion-pumping rhodopsins, DTG/DTS rhodopsin does not have a cytoplasmic proton donor residue, such as Asp, Glu, or Lys. Because of the lack of cytoplasmic proton donor residue, proton directly binds to the retinal chromophore from the cytoplasmic solvent. However, mutational experiments that showed the complicated effects of mutations were not able to clarify the roles played by each residue, and the detail of proton uptake pathway is unclear because of the lack of structural information. To understand the proton transport mechanism of DTG/ DTS rhodopsin, here we report the three-dimensional structure of one of the DTG/DTS rhodopsins, PspR from Pseudomonas putida, by X-ray crystallography. We show that the structure of the cytoplasmic side of the protein is significantly different from that of bacteriorhodopsin, the best characterized proton-pumping rhodopsin, and large cytoplasmic cavities were observed. We propose that these hydrophilic cytoplasmic cavities enable direct proton uptake from the cytoplasmic solvent without the need for a specialized cytoplasmic donor residue. The introduction of carboxylic residues homologous to the cytoplasmic donors in other proton-pumping rhodopsins resulted in higher pumping activity with less pH dependence, suggesting that DTG/DTS rhodopsins are advantageous for producing energy and avoiding intracellular alkalization in soil and plant-associated bacteria.
  • Takeshi Haraguchi, Masanori Tamanaha, Kano Suzuki, Kohei Yoshimura, Takuma Imi, Motoki Tominaga, Hidetoshi Sakayama, Tomoaki Nishiyama, Takeshi Murata, Kohji Ito
    Proceedings of the National Academy of Sciences 119(8) e2120962119 2022年2月16日  査読有り責任著者
    Significance It has been suggested for more than 50 y that the fastest myosin in the biological world with a velocity of 70 μm s −1 exists in the alga Chara , because cytoplasmic streaming with a velocity of 70 μm s −1 occurs in Chara cells. However, a myosin with that velocity has not yet been identified. In this work, we succeeded in cloning a myosin XI with a velocity of 60 μm s −1 , which was measured using a chimeric myosin. We also successfully crystallized myosin XI. Structural comparison of various myosins and mutation experiments of actin-binding regions suggests that the central regions that define the fast movement of Chara myosin XI are the actin-binding sites.
  • Kabir, A.M.R., Munmun, T., Hayashi, T., Yasuda, S., Kimura, A.P., Kinoshita, M., Murata, T., Sada, K., Kakugo, A.
    ACS Omega 7(4) 3796-3803 2022年2月1日  査読有り
  • Satoshi Yasuda, Tomoki Akiyama, Keiichi Kojima, Tetsuya Ueta, Tomohiko Hayashi, Satoshi Ogasawara, Satoru Nagatoishi, Kouhei Tsumoto, Naoki Kunishima, Yuki Sudo, Masahiro Kinoshita, Takeshi Murata
    Journal of Physical Chemistry B 126(5) 1004-1015 2022年1月28日  査読有り最終著者責任著者
    We have developed a methodology for identifying further thermostabilizing mutations for an intrinsically thermostable membrane protein. The methodology comprises the following steps: (1) identifying thermostabilizing single mutations (TSSMs) for residues in the transmembrane region using our physics-based method; (2) identifying TSSMs for residues in the extracellular and intracellular regions, which are in aqueous environment, using an empirical force field FoldX; and (3) combining the TSSMs identified in steps (1) and (2) to construct multiple mutations. The methodology is illustrated for thermophilic rhodopsin whose apparent midpoint temperature of thermal denaturation Tm is ∼91.8 °C. The TSSMs previously identified in step (1) were F90K, F90R, and Y91I with ΔTm ∼5.6, ∼5.5, and ∼2.9 °C, respectively, and those in step (2) were V79K, T114D, A115P, and A116E with ΔTm ∼2.7, ∼4.2, ∼2.6, and ∼2.3 °C, respectively (ΔTm denotes the increase in Tm). In this study, we construct triple and quadruple mutants, F90K+Y91I+T114D and F90K+Y91I+V79K+T114D. The values of ΔTm for these multiple mutants are ∼11.4 and ∼13.5 °C, respectively. Tm of the quadruple mutant (∼105.3 °C) establishes a new record in a class of outward proton pumping rhodopsins. It is higher than Tm of Rubrobacter xylanophilus rhodopsin (∼100.8 °C) that was the most thermostable in the class before this study.
  • 安田賢司, 木下正弘, 村田武士
    クリーンエネルギー 31(7) 28-35 2022年  招待有り最終著者
  • Atsuhiro Tomita, Takashi Daiho, Tsukasa Kusakizako, Keitaro Yamashita, Satoshi Ogasawara, Takeshi Murata, Tomohiro Nishizawa, Osamu Nureki
    Molecular Cell 81(23) 4799-4809.e5 2021年12月  査読有り
    The cytoplasmic polyamine maintains cellular homeostasis by chelating toxic metal cations, regulating transcriptional activity, and protecting DNA. ATP13A2 was identified as a lysosomal polyamine exporter responsible for polyamine release into the cytosol, and its dysfunction is associated with Alzheimer's disease and other neural degradation diseases. ATP13A2 belongs to the P5 subfamily of the P-type ATPase family, but its mechanisms remain unknown. Here, we report the cryoelectron microscopy (cryo-EM) structures of human ATP13A2 under four different conditions, revealing the structural coupling between the polyamine binding and the dephosphorylation. Polyamine is bound at the luminal tunnel and recognized through numerous electrostatic and π-cation interactions, explaining its broad specificity. The unique N-terminal domain is anchored to the lipid membrane to stabilize the E2P conformation, thereby accelerating the E1P-to-E2P transition. These findings reveal the distinct mechanism of P5B ATPases, thereby paving the way for neuroprotective therapy by activating ATP13A2.
  • Masaya Mitsumoto, Kanna Sugaya, Kazuki Kazama, Ryosuke Nakano, Takahiro Kosugi, Takeshi Murata, Nobuyasu Koga
    International journal of molecular sciences 22(23) 12906-12906 2021年11月29日  査読有り責任著者
    G-protein coupled receptors (GPCRs) are known for their low stability and large conformational changes upon transitions between multiple states. A widely used method for stabilizing these receptors is to make chimeric receptors by fusing soluble proteins (i.e., fusion partner proteins) into the intracellular loop 3 (ICL3) connecting the transmembrane helices 5 and 6 (TM5 and TM6). However, this fusion approach requires experimental trial and error to identify appropriate soluble proteins, residue positions, and linker lengths for making the fusion. Moreover, this approach has not provided state-targeting stabilization of GPCRs. Here, to rationally stabilize a class A GPCR, adenosine A2A receptor (A2AR) in a target state, we carried out the custom-made de novo design of α-helical fusion partner proteins, which can fix the conformation of TM5 and TM6 to that in an inactive state of A2AR through straight helical connections without any kinks or intervening loops. The chimeric A2AR fused with one of the designs (FiX1) exhibited increased thermal stability. Moreover, compared with the wild type, the binding affinity of the chimera against the agonist NECA was significantly decreased, whereas that against the inverse agonist ZM241385 was similar, indicating that the inactive state was selectively stabilized. Our strategy contributes to the rational state-targeting stabilization of GPCRs.
  • Tatsuki Asai, Naruhiko Adachi, Toshio Moriya, Hideyuki Oki, Takamitsu Maru, Masato Kawasaki, Kano Suzuki, Sisi Chen, Ryohei Ishii, Kazuko Yonemori, Shigeru Igaki, Satoshi Yasuda, Satoshi Ogasawara, Toshiya Senda, Takeshi Murata
    Structure 29(3) 203-212.e4 2021年3月  査読有り最終著者責任著者
    The hERG channel is a voltage-gated potassium channel involved in cardiac repolarization. Off-target hERG inhibition by drugs has become a critical issue in the pharmaceutical industry. The three-dimensional structure of the hERG channel was recently reported at 3.8-Å resolution using cryogenic electron microscopy (cryo-EM). However, the drug inhibition mechanism remains unclear because of the scarce structural information regarding the drug- and potassium-bound hERG channels. In this study, we obtained the cryo-EM density map of potassium-bound hERG channel complexed with astemizole, a well-known hERG inhibitor that increases risk of potentially fatal arrhythmia, at 3.5-Å resolution. The structure suggested that astemizole inhibits potassium conduction by binding directly below the selectivity filter. Furthermore, we propose a possible binding model of astemizole to the hERG channel and provide insights into the unusual sensitivity of hERG to several drugs.
  • Kouki Shimizu, Issei Seiki, Yoshiyuki Goto, Takeshi Murata
    Antibiotics 10(2) 180-180 2021年2月11日  査読有り最終著者責任著者
    The intestinal pH can greatly influence the stability and absorption of oral drugs. Therefore, knowledge of intestinal pH is necessary to understand the conditions for drug delivery. This has previously been measured in humans and rats. However, information on intestinal pH in mice is insufficient despite these animals being used often in preclinical testing. In this study, 72 female ICR mice housed in SPF (specific pathogen-free) conditions were separated into nine groups to determine the intestinal pH under conditions that might cause pH fluctuations, including high-protein diet, ageing, proton pump inhibitor (PPI) treatment, several antibiotic treatment regimens and germ-free mice. pH was measured in samples collected from the ileum, cecum and colon, and compared to control animals. An electrode, 3 mm in diameter, enabled accurate pH measurements with a small amount of gastrointestinal content. Consequently, the pH values in the cecum and colon were increased by high-protein diet, and the pH in the ileum was decreased by PPI. Drastic alkalization was induced by antibiotics, especially in the cecum and colon. The alkalized pH values in germ-free mice suggested that the reduction in the intestinal bacteria caused by antibiotics led to alkalization. Alkalization of the intestinal pH caused by antibiotic treatment was verified in mice. We need further investigations in clinical settings to check whether the same phenomena occur in patients.
  • Hironori Takeda, Akihisa Tsutsumi, Tomohiro Nishizawa, Caroline Lindau, Jon V. Busto, Lena-Sophie Wenz, Lars Ellenrieder, Kenichiro Imai, Sebastian P. Straub, Waltraut Mossmann, Jian Qiu, Yu Yamamori, Kentaro Tomii, Junko Suzuki, Takeshi Murata, Satoshi Ogasawara, Osamu Nureki, Thomas Becker, Nikolaus Pfanner, Nils Wiedemann, Masahide Kikkawa, Toshiya Endo
    Nature 590(7844) 163-169 2021年2月4日  査読有り
    The mitochondrial outer membrane contains so-called beta-barrel proteins, which allow communication between the cytosol and the mitochondrial interior(1-3). Insertion of beta-barrel proteins into the outer membrane is mediated by the multisubunit mitochondrial sorting and assembly machinery (SAM, also known as TOB)(4-6). Here we use cryo-electron microscopy to determine the structures of two different forms of the yeast SAM complex at a resolution of 2.8-3.2 angstrom. The dimeric complex contains two copies of the beta-barrel channel protein Sam50-Sam50a and Sam50b-with partially open lateral gates. The peripheral membrane proteins Sam35 and Sam37 cap the Sam50 channels from the cytosolic side, and are crucial for the structural and functional integrity of the dimeric complex. In the second complex, Sam50b is replaced by the beta-barrel protein Mdm10. In cooperation with Sam50a, Sam37 recruits and traps Mdm10 by penetrating the interior of its laterally closed beta-barrel from the cytosolic side. The substrate-loaded SAM complex contains one each of Sam50, Sam35 and Sam37, but neither Mdm10 nor a second Sam50, suggesting that Mdm10 and Sam50b function as placeholders for a beta-barrel substrate released from Sam50a. Our proposed mechanism for dynamic switching of beta-barrel subunits and substrate explains how entire precursor proteins can fold in association with the mitochondrial machinery for beta-barrel assembly.
  • Takeshi Murata
    Biochemical and Biophysical Research Communications 533(4) 1413-1418 2020年12月  査読有り最終著者責任著者
  • Satoshi Ogasawara, Kano Suzuki, Kentaro Naruchi, Seiwa Nakamura, Junpei Shimabukuro, Nanase Tsukahara, Mika K. Kaneko, Yukinari Kato, Takeshi Murata
    Biochemical and Biophysical Research Communications 533(1) 57-63 2020年11月  査読有り最終著者責任著者
    Podoplanin (PDPN) is a highly O-glycosylated glycoprotein that is utilized as a specific lymphatic endothelial marker under pathophysiological conditions. We previously developed an anti-human PDPN (hPDPN) monoclonal antibody (mAb), clone LpMab-3, which recognizes the epitope, including both the peptides and the attached disialy-core-l (NeuAcα2-3Galβl-3 [NeuAcα2-6]GalNAcαl-O-Thr) structure at the Thr76 residue in hPDPN. However, it is unclear if the mAb binds directly to both the peptides and glycans. In this study, we synthesized the binding epitope region of LpMab-3 that includes the peptide (-67LVATSVNSV-T-GIRIEDLP84-) possessing a disialyl-core-1 O-glycan at Thr76, and we determined the crystal structure of the LpMab-3 Fab fragment that was bound to the synthesized glycopeptide at a 2.8 Å resolution. The six amino acid residues and two sialic acid residues are directly associated with four complementarity-determining regions (CDRs; H1, H2, H3, and L3) and four CDRs (H2, H3, L1, and L3), respectively. These results suggest that IgG is advantageous for generating binders against spacious epitopes such as glycoconjugates.
  • Akihiko Nakamura, Daiki Ishiwata, Akasit Visootsat, Taku Uchiyama, Kenji Mizutani, Satoshi Kaneko, Takeshi Murata, Kiyohiko Igarashi, Ryota Iino
    Journal of Biological Chemistry 295(43) 14606-14617 2020年10月  査読有り
    Cellobiohydrolases directly convert crystalline cellulose into cellobiose, and are of biotechnological interest to achieve efficient biomass utilization. As a result, much research in the field has focused on identifying cellobiohydrolases that are very fast. Cellobiohydrolase A from the bacterium Cellulomonas fimi (CfCel6B) and cellobiohydrolase II from the fungus Trichoderma reesei (TrCel6A) have similar catalytic domains (CDs) and show similar hydrolytic activity. However, TrCel6A and CfCel6B have different cellulose binding domains (CBDs) and linkers: TrCel6A has a glycosylated peptide linker while CfCel6B's linker consists of three fibronectin type 3 domains. We previously found that TrCel6A's linker plays an important role in increasing the binding rate constant to crystalline cellulose. However, it was not clear whether CfCel6B's linker has similar function. Here we analyze kinetic parameters of CfCel6B using single-molecule fluorescence imaging to compare CfCel6B and TrCel6A. We find that CBD is important for initial binding of CfCel6B, but the contribution of the linker to the binding rate constant or to the dissociation rate constant is minor. The crystal structure of CfCel6B CD showed longer loops at the entrance and exit of the substrate-binding tunnel compared to TrCel6A CD, which results in higher processivity. Furthermore, CfCel6B CD showed not only fast surface diffusion but also slow processive movement, which is not observed in TrCel6A CD. Combined with the results of a phylogenetic tree analysis, we propose that bacterial cellobiohydrolases are designed to degrade crystalline cellulose using high-affinity CBD and high-processivity CD.
  • Tomoki Akiyama, Naoki Kunishima, Sayaka Nemoto, Kazuki Kazama, Masako Hirose, Yuki Sudo, Yoshinori Matsuura, Hisashi Naitow, Takeshi Murata
    Proteins: Structure, Function, and Bioinformatics 89(3) 301-310 2020年10月  査読有り最終著者責任著者
    It is known that a hyperthermostable protein tolerable at temperatures over 100°C can be designed from a soluble globular protein by introducing mutations. To expand the applicability of this technology to membrane proteins, here we report a further thermo-stabilization of the thermophilic rhodopsin from Thermus thermophilus JL-18 as a model membrane protein. Ten single mutations in the extramembrane regions were designed based on a computational prediction of folding free-energy differences upon mutation. Experimental characterizations using the UV-visible spectroscopy and the differential scanning calorimetry revealed that four of ten mutations were thermo-stabilizing: V79K, T114D, A115P, and A116E. The mutation-structure relationship of the TR constructs was analyzed using molecular dynamics simulations at 300 K and at 1800 K that aimed simulating structures in the native and in the random-coil states, respectively. The native-state simulation exhibited an ion-pair formation of the stabilizing V79K mutant as it was designed, and suggested a mutation-induced structural change of the most stabilizing T114D mutant. On the other hand, the random-coil-state simulation revealed a higher structural fluctuation of the destabilizing mutant S8D when compared to the wild type, suggesting that the higher entropy in the random-coil state deteriorated the thermal stability. The present thermo-stabilization design in the extramembrane regions based on the free-energy calculation and the subsequent evaluation by the molecular dynamics may be useful to improve the production of membrane proteins for structural studies.
  • Tomohiko Hayashi, Satoshi Yasuda, Kano Suzuki, Tomoki Akiyama, Kanae Kanehara, Keiichi Kojima, Mikio Tanabe, Ryuichi Kato, Toshiya Senda, Yuki Sudo, Takeshi Murata, Masahiro Kinoshita
    The journal of physical chemistry. B 124(14) 2973-2973 2020年4月9日  査読有り責任著者
  • Murata, T., Yasuda, S., Hayashi, T., Kinoshita, M.
    Biophysical Reviews 12(2) 323-332 2020年4月  査読有り筆頭著者
  • Satoshi Yasuda, Tomoki Akiyama, Sayaka Nemoto, Tomohiko Hayashi, Tetsuya Ueta, Keiichi Kojima, Takashi Tsukamoto, Satoru Nagatoishi, Kouhei Tsumoto, Yuki Sudo, Masahiro Kinoshita, Takeshi Murata
    Journal of chemical information and modeling 60(3) 1709-1716 2020年3月23日  査読有り最終著者責任著者
    We develop a new methodology best suited to the identification of thermostabilizing mutations for an intrinsically stable membrane protein. The recently discovered thermophilic rhodopsin, whose apparent midpoint temperature of thermal denaturation Tm is measured to be ∼91.8 °C, is chosen as a paradigmatic target. In the methodology, we first regard the residues whose side chains are missing in the crystal structure of the wild type (WT) as the "residues with disordered side chains," which make no significant contributions to the stability, unlike the other essential residues. We then undertake mutating each of the residues with disordered side chains to another residue except Ala and Pro, and the resultant mutant structure is constructed by modifying only the local structure around the mutated residue. This construction is based on the postulation that the structure formed by the other essential residues, which is nearly optimized in such a highly stable protein, should not be modified. The stability changes arising from the mutations are then evaluated using our physics-based free-energy function (FEF). We choose the mutations for which the FEF is much lower than for the WT and test them by experiments. We successfully find three mutants that are significantly more stable than the WT. A double mutant whose Tm reaches ∼100 °C is also discovered.
  • Takeshi Murata
    The Journal of Cell Biology 219(3) 2020年3月2日  査読有り
    The accumulation of aberrant proteins leads to various neurodegenerative disorders. Mammalian cells contain several intracellular protein degradation systems, including autophagy and proteasomal systems, that selectively remove aberrant intracellular proteins. Although mammals contain not only intracellular but also extracellular proteins, the mechanism underlying the quality control of aberrant extracellular proteins is poorly understood. Here, using a novel quantitative fluorescence assay and genome-wide CRISPR screening, we identified the receptor-mediated degradation pathway by which misfolded extracellular proteins are selectively captured by the extracellular chaperone Clusterin and undergo endocytosis via the cell surface heparan sulfate (HS) receptor. Biochemical analyses revealed that positively charged residues on Clusterin electrostatically interact with negatively charged HS. Furthermore, the Clusterin–HS pathway facilitates the degradation of amyloid β peptide and diverse leaked cytosolic proteins in extracellular space. Our results identify a novel protein quality control system for preserving extracellular proteostasis and highlight its role in preventing diseases associated with aberrant extracellular proteins.
  • Takeshi Murata
    Journal of Molecular Liquids 301 112403-112403 2020年3月  査読有り最終著者責任著者
  • Tomohiko Hayashi, Satoshi Yasuda, Kano Suzuki, Tomoki Akiyama, Kanae Kanehara, Keiichi Kojima, Mikio Tanabe, Ryuichi Kato, Toshiya Senda, Yuki Sudo, Takeshi Murata, Masahiro Kinoshita
    The Journal of Physical Chemistry B 124(6) 990-1000 2020年2月13日  査読有り責任著者
    We often encounter a case where two proteins, whose amino-acid sequences are similar, are quite different with regard to the thermostability. As a striking example, we consider the two seven-transmembrane proteins: recently discovered Rubrobacter xylanophilus rhodopsin (RxR) and long-known bacteriorhodopsin from Halobacterium salinarum (HsBR). They commonly function as a light-driven proton pump across the membrane. Though their sequence similarity and identity are ∼71 and ∼45%, respectively, RxR is much more thermostable than HsBR. In this study, we solve the three-dimensional structure of RxR using X-ray crystallography and find that the backbone structures of RxR and HsBR are surprisingly similar to each other: The root-mean-square deviation for the two structures calculated using the backbone Cα atoms of the seven helices is only 0.86 Å, which makes the large stability difference more puzzling. We calculate the thermostability measure and its energetic and entropic components for RxR and HsBR using our recently developed statistical-mechanical theory. The same type of calculation is independently performed for the portions playing essential roles in the proton-pumping function, helices 3 and 7, and their structural properties are related to the probable roles of water molecules in the proton-transporting mechanism. We succeed in elucidating how RxR realizes its exceptionally high stability with the original function being retained. This study provides an important first step toward the establishment of a method correlating microscopic, geometric characteristics of a protein with its thermodynamic properties and enhancing the thermostability through amino-acid mutations without vitiating the original function.
  • Takeshi Murata
    Biophysical Journal 2020年  
  • Tatsuya Iida, Yoshihiro Minagawa, Hiroshi Ueno, Fumihiro Kawai, Takeshi Murata, Ryota Iino
    Journal of Biological Chemistry 294(45) 17017-17030 2019年11月8日  査読有り
    V1-ATPase (V1), the catalytic domain of an ion-pumping V-ATPase, is a molecular motor that converts ATP hydrolysis-derived chemical energy into rotation. Here, using a gold nanoparticle probe, we directly observed rotation of V1 from the pathogen Enterococcus hirae (EhV1). We found that 120° steps in each ATP hydrolysis event are divided into 40 and 80° substeps. In the main pause before the 40° substep and at low ATP concentration ([ATP]), the time constant was inversely proportional to [ATP], indicating that ATP binds during the main pause with a rate constant of 1.0 × 107 m-1 s-1 At high [ATP], we observed two [ATP]-independent time constants (0.5 and 0.7 ms). One of two time constants was prolonged (144 ms) in a rotation driven by slowly hydrolyzable ATPγS, indicating that ATP is cleaved during the main pause. In another subpause before the 80° substep, we noted an [ATP]-independent time constant (2.5 ms). Furthermore, in an ATP-driven rotation of an arginine-finger mutant in the presence of ADP, -80 and -40° backward steps were observed. The time constants of the pauses before -80° backward and +40° recovery steps were inversely proportional to [ADP] and [ATP], respectively, indicating that ADP- and ATP-binding events trigger these steps. Assuming that backward steps are reverse reactions, we conclude that 40 and 80° substeps are triggered by ATP binding and ADP release, respectively, and that the remaining time constant in the main pause represents phosphate release. We propose a chemo-mechanical coupling scheme of EhV1, including substeps largely different from those of F1-ATPases.

MISC

 107

講演・口頭発表等

 375

共同研究・競争的資金等の研究課題

 20

産業財産権

 19