大学院工学研究院

森 康久仁

Yasukuni Mori

基本情報

所属
千葉大学 大学院工学研究院
学位
博士(北海道大学)

J-GLOBAL ID
200901040057908971
researchmap会員ID
5000048017

論文

 15
  • Manami Takahashi, Reika Kosuda, Hiroyuki Takaoka, Hajime Yokota, Yasukuni Mori, Joji Ota, Takuro Horikoshi, Yasuhiko Tachibana, Hideki Kitahara, Masafumi Sugawara, Tomonori Kanaeda, Hiroki Suyari, Takashi Uno, Yoshio Kobayashi
    Heart and vessels 38(11) 1318-1328 2023年8月8日  
    Fractional flow reserve derived from coronary CT (FFR-CT) is a noninvasive physiological technique that has shown a good correlation with invasive FFR. However, the use of FFR-CT is restricted by strict application standards, and the diagnostic accuracy of FFR-CT analysis may potentially be decreased by severely calcified coronary arteries because of blooming and beam hardening artifacts. The aim of this study was to evaluate the utility of deep learning (DL)-based coronary computed tomography (CT) data analysis in predicting invasive fractional flow reserve (FFR), especially in cases with severely calcified coronary arteries. We analyzed 184 consecutive cases (241 coronary arteries) which underwent coronary CT and invasive coronary angiography, including invasive FFR, within a three-month period. Mean coronary artery calcium scores were 963 ± 1226. We evaluated and compared the vessel-based diagnostic accuracy of our proposed DL model and a visual assessment to evaluate functionally significant coronary artery stenosis (invasive FFR < 0.80). A deep neural network was trained with consecutive short axial images of coronary arteries on coronary CT. Ninety-one coronary arteries of 89 cases (48%) had FFR-positive functionally significant stenosis. On receiver operating characteristics (ROC) analysis to predict FFR-positive stenosis using the trained DL model, average area under the curve (AUC) of the ROC curve was 0.756, which was superior to the AUC of visual assessment of significant (≥ 70%) coronary artery stenosis on CT (0.574, P = 0.011). The sensitivity, specificity, positive and negative predictive value (PPV and NPV), and accuracy of the DL model and visual assessment for detecting FFR-positive stenosis were 82 and 36%, 68 and 78%, 59 and 48%, 87 and 69%, and 73 and 63%, respectively. Sensitivity and NPV for the prediction of FFR-positive stenosis were significantly higher with our DL model than visual assessment (P = 0.0004, and P = 0.024). DL-based coronary CT data analysis has a higher diagnostic accuracy for functionally significant coronary artery stenosis than visual assessment.
  • Toshio Kumakiri, Shinichiro Mori, Yasukuni Mori, Ryusuke Hirai, Ayato Hashimoto, Yasuhiko Tachibana, Hiroki Suyari, Hitoshi Ishikawa
    Physical and engineering sciences in medicine 46(2) 659-668 2023年6月  
    Since particle beam distribution is vulnerable to change in bowel gas because of its low density, we developed a deep neural network (DNN) for bowel gas segmentation on X-ray images. We used 6688 image datasets from 209 cases as training data, 736 image datasets from 23 cases as validation data and 102 image datasets from 51 cases as test data (total 283 cases). For the training data, we prepared three types of digitally reconstructed radiographic (DRR) images (all-density, bone and gas) by projecting the treatment planning CT image data. However, the real X-ray images acquired in the treatment room showed low contrast that interfered with manual delineation of bowel gas. Therefore, we used synthetic X-ray images converted from DRR images in addition to real X-ray images.We evaluated DNN segmentation accuracy for the synthetic X-ray images using Intersection over Union, recall, precision, and the Dice coefficient, which measured 0.708 ± 0.208, 0.832 ± 0.170, 0.799 ± 0.191, and 0.807 ± 0.178, respectively. The evaluation metrics for the real X-images were less accurate than those for the synthetic X-ray images (0.408 ± 0237, 0.685 ± 0.326, 0.490 ± 0272, and 0.534 ± 0.271, respectively). Computation time was 29.7 ± 1.3 ms/image. Our DNN appears useful in increasing treatment accuracy in particle beam therapy.
  • Katsuya Kosukegawa, Yasukuni Mori, Hiroki Suyari, Kazuhiko Kawamoto
    Scientific reports 13(1) 2354-2354 2023年2月9日  
    To ensure the safety of railroad operations, it is important to monitor and forecast track geometry irregularities. A higher safety requires forecasting with higher spatiotemporal frequencies, which in turn requires capturing spatial correlations. Additionally, track geometry irregularities are influenced by multiple exogenous factors. In this study, a method is proposed to forecast one type of track geometry irregularity, vertical alignment, by incorporating spatial and exogenous factor calculations. The proposed method embeds exogenous factors and captures spatiotemporal correlations using a convolutional long short-term memory. The proposed method is also experimentally compared with other methods in terms of the forecasting performance. Additionally, an ablation study on exogenous factors is conducted to examine their individual contributions to the forecasting performance. The results reveal that spatial calculations and maintenance record data improve the forecasting of vertical alignment.
  • Yosuke Iwatate, Hajime Yokota, Isamu Hoshino, Fumitaka Ishige, Naoki Kuwayama, Makiko Itami, Yasukuni Mori, Satoshi Chiba, Hidehito Arimitsu, Hiroo Yanagibashi, Wataru Takayama, Takashi Uno, Jason Lin, Yuki Nakamura, Yasutoshi Tatsumi, Osamu Shimozato, Hiroki Nagase
    International journal of oncology 60(5) 2022年5月  
    Radiogenomics has attracted attention for predicting the molecular biological characteristics of tumors from clinical images, which are originally a collection of numerical values, such as computed tomography (CT) scans. A prediction model using genetic information is constructed using thousands of image features extracted and calculated from these numerical values. In the present study, RNA sequencing of pancreatic ductal adenocarcinoma (PDAC) tissues from 12 patients was performed to identify genes useful in evaluating clinical pathology, and 107 PDAC samples were immunostained to verify the obtained findings. In addition, radiogenomics analysis of gene expression was performed by machine learning using CT images and constructed prediction models. Bioinformatics analysis of RNA sequencing data identified integrin αV (ITGAV) as being important for clinicopathological factors, such as metastasis and prognosis, and the results of sequencing and immunostaining demonstrated a significant correlation (r=0.625, P=0.039). Notably, the ITGAV high‑expression group was associated with a significantly worse prognosis (P=0.005) and recurrence rate (P=0.003) compared with the low‑expression group. The ITGAV prediction model showed some detectability (AUC=0.697), and the predicted ITGAV high‑expression group was also associated with a worse prognosis (P=0.048). In conclusion, radiogenomics predicted the expression of ITGAV in pancreatic cancer, as well as the prognosis.
  • Isamu Hoshino, Hajime Yokota, Yosuke Iwatate, Yasukuni Mori, Naoki Kuwayama, Fumitaka Ishige, Makiko Itami, Takashi Uno, Yuki Nakamura, Yasutoshi Tatsumi, Osamu Shimozato, Hiroki Nagase
    Cancer science 113(1) 229-239 2022年1月  
    Tumor mutational burden (TMB) is gaining attention as a biomarker for responses to immune checkpoint inhibitors in cancer patients. In this study, we evaluated the status of TMB in primary and liver metastatic lesions in patients with colorectal cancer (CRC). In addition, the status of TMB in primary and liver metastatic lesions was inferred by radiogenomics on the basis of computed tomography (CT) images. The study population included 24 CRC patients with liver metastases. DNA was extracted from primary and liver metastatic lesions obtained from the patients and TMB values were evaluated by next-generation sequencing. The TMB value was considered high when it equaled to or exceeded 10/100 Mb. Radiogenomic analysis of TMB was performed by machine learning using CT images and the construction of prediction models. In 7 out of 24 patients (29.2%), the TMB status differed between the primary and liver metastatic lesions. Radiogenomic analysis was performed to predict whether TMB status was high or low. The maximum values for the area under the receiver operating characteristic curve were 0.732 and 0.812 for primary CRC and CRC with liver metastasis, respectively. The sensitivity, specificity, and accuracy of the constructed models for TMB status discordance were 0.857, 0.600, and 0.682, respectively. Our results suggested that accurate inference of the TMB status is possible using radiogenomics. Therefore, radiogenomics could facilitate the diagnosis, treatment, and prognosis of patients with CRC in the clinical setting.

MISC

 30
  • 小助川 克也, 川本 一彦, 森 康久仁, 須鎗 弘樹
    人工知能学会全国大会論文集 JSAI2022 4Yin224-4Yin224 2022年6月  
    軌道狂いとは軌道に生じた歪みや変形であり,その劣化速度は保線工事や軌道直下の地盤などの複数の外因的要素によって変化する.これらの外因的要素を表すデータには,軌道直下の地形を表す空間的なカテゴリカルデータや,保線工事の施工有無を表す時空間的な二値データなどがある.これまで我々は,このような外因性データを用いて,convolutional long short-term memory (ConvLSTM) によって新幹線の軌道狂いを時空間予測してきた.このConvLSTMでは,カテゴリカルデータや二値データを埋め込み層に入力することで,各外因的要素を特徴ベクトルで表現した.本論文では,専門家の知見にしたがって,降水量,設備の年齢,列車の単位通過量を新たな外因性データとして追加し,回帰予測している.ドクターイエローによる実データを用いた実験では,追加した外因性データを含めて,予測への寄与を調べ,予測に影響のある外因的要素を特定した.
  • 星野 敢, 森 康久仁, 岩立 陽祐, 石毛 文隆, 郡司 久, 桑山 直樹, 江藤 亮大郎, 外岡 亨, 早田 浩明, 滝口 伸浩, 横田 元, 鍋谷 圭宏
    日本外科学会定期学術集会抄録集 121回 SF-5 2021年4月  
  • 田代弘平, 寺崎優希, 横田元, 太田丞二, 堀越琢郎, 森康久仁, 須鎗弘樹
    人工知能学会全国大会論文集(Web) 34th 2020年  
  • 小須田玲花, 小名木佑来, 太田丞二, 高橋愛, 高岡浩之, 堀越琢郎, 横田元, 森康久仁, 須鎗弘樹
    人工知能学会全国大会論文集(Web) 34th 2020年  
  • ONGGO Barata, 太田 丞二, 堀越 琢朗, 横田 元, 森 康久仁, 須鎗 弘樹
    人工知能学会全国大会論文集 2020 2H5GS1305-2H5GS1305 2020年  
    <p>継続的な治療における今後の治療方針の決定や治療効果の評価のために,各治療のステップに応じてCT画像を複数の時期で撮影することが一般的に行われている.したがって,現在の状態を写したCT画像中の注目すべきスライスが,過去に撮像したCT画像のどのスライスに対応しているかを特定する必要がある.そこで,深層距離学習を用いて異なる時期に撮影したCT画像中の各スライス間の類似度を測り,注目スライスと最も類似したスライスを特定する方法論を提案することが本研究の目的である. モデルの学習には,クエリー,ポシティブ,ネガティブの3つの画像を1組にしたトリプレットロスを利用した.注目するスライスの上下β枚のスライスは臓器の構造が類似していると仮定し,学習時のポシティブ画像として扱い,それ以外のスライスをネガティブ画像とした.9,062枚のCT画像を利用し学習を行い,テストでは,異なる時期に撮影されたCT画像を利用した.学習結果のモデルを用いて,時期が異なるCTスライスの位置を推定したところ,経験豊富な放射線技師の視覚評価と同等の結果を得ることができた.</p>

所属学協会

 2

共同研究・競争的資金等の研究課題

 4