研究者業績

川久保 友超

カワクボ ユウキ  (Yuki Kawakubo)

基本情報

所属
千葉大学 大学院社会科学研究院 准教授
学位
博士(経済学)(東京大学)

研究者番号
80771881
J-GLOBAL ID
201801017703744751
researchmap会員ID
B000334639

経歴

 2

論文

 11
  • Genya Kobayashi, Shonosuke Sugasawa, Yuki Kawakubo, Dongu Han, Taeryon Choi
    The Annals of Applied Statistics 18(4) 2024年12月1日  
  • Yuki Kawakubo, Genya Kobayashi
    Computational Statistics & Data Analysis 184 107741 2023年8月  査読有り筆頭著者責任著者
  • Genya Kobayashi, Yuta Yamauchi, Kazuhiko Kakamu, Yuki Kawakubo, Shonosuke Sugasawa
    Journal of Business & Economic Statistics 40(2) 897-912 2021年  査読有り
  • Shonosuke Sugasawa, Genya Kobayashi, Yuki Kawakubo
    Computational Statistics & Data Analysis 145 106904-106904 2020年5月  査読有り
  • Shonosuke Sugasawa, Yuki Kawakubo, Kota Ogasawara
    Journal of Statistical Computation and Simulation 90(6) 1039-1056 2020年4月12日  査読有り
  • Shonosuke Sugasawa, Yuki Kawakubo, Gauri Sankar Datta
    Journal of Multivariate Analysis 173 383-392 2019年9月  査読有り
  • Shonosuke Sugasawa, Genya Kobayashi, Yuki Kawakubo
    Statistics and Computing 29(3) 537-548 2019年5月  査読有り
  • Kawakubo, Y, Kubokawa, T, Srivastava, M.S
    Sankhya B 80 60-84 2018年  査読有り
  • Kawakubo, Y, Sugasawa, S, Kubokawa, T
    Canadian Journal of Statistics 46(2) 316-335 2018年  査読有り
  • M. Ghosh, T. Kubokawa, Y. Kawakubo
    BIOMETRIKA 102(3) 647-659 2015年9月  査読有り
    The paper develops hierarchical empirical Bayes and benchmarked hierarchical empirical Bayes estimators of positive small area means under multiplicative models. The usual benchmarking requirement is that the small area estimates, when aggregated, should equal the direct estimates for the larger geographical areas. However, while estimating positive small area parameters, the conventional squared error or weighted squared error loss subject to the usual benchmark constraint may not produce positive estimators, so it is necessary to seek other loss functions. We consider a multiplicative model for the original data for estimating positive small area means, and suggest a variant of the Kullback-Leibler divergence as a loss function. The prediction errors of the suggested hierarchical empirical Bayes estimators are investigated asymptotically, and their second-order unbiased estimators are provided. Bootstrapped estimators of these prediction errors for both hierarchical empirical Bayes and benchmarked hierarchical empirical Bayes estimators are also given. The performance of the suggested procedures is investigated through simulation as well as with an example.
  • Yuki Kawakubo, Tatsuya Kubokawa
    JOURNAL OF MULTIVARIATE ANALYSIS 129 44-56 2014年8月  査読有り
    In linear mixed models, the conditional Akaike Information Criterion (cAIC) is a procedure for variable selection in light of the prediction of specific clusters or random effects. This is useful in problems involving prediction of random effects such as small area estimation, and much attention has been received since suggested by Vaida and Blanchard (2005). A weak point of cAIC is that it is derived as an unbiased estimator of conditional Akaike Information (cAI) in the overspecified case, namely in the case that candidate models include the true model. This results in larger biases in the underspecified case that the true model is not included in candidate models. In this paper, we derive the modified cAIC (McAlC) to cover both the underspecified and overspecified cases, and investigate properties of McAlC. It is numerically shown that McAIC has less biases and less prediction errors than cAIC. (C) 2014 Elsevier Inc. All rights reserved.

MISC

 1

書籍等出版物

 1
  • 菅澤翔之助, 小林弦矢, 川久保友超, 栗栖大輔, 玉江大将, 株式会社Nospare
    森北出版 2024年6月 (ISBN: 9784627097032)

講演・口頭発表等

 40

共同研究・競争的資金等の研究課題

 6