研究者業績

平山 友里

ヒラヤマ ユリ  (Yuri Hirayama)

基本情報

所属
千葉大学 大学院医学研究院薬理学 助教
学位
博士(医科学)

J-GLOBAL ID
201701013839695573
researchmap会員ID
B000285419

脳虚血障害におけるトランスポーターの機能と役割について、脳梗塞モデル動物(MCAO)を用いて研究を行っています。

論文

 25
  • Shinpei Saito, Keisuke Ando, Shinichi Sakamoto, Minhui Xu, Yasutaka Yamada, Junryo Rii, Sanji Kanaoka, Jiaxing Wei, Xue Zhao, Sangjon Pae, Manato Kanesaka, Yusuke Goto, Tomokazu Sazuka, Yusuke Imamura, Yoshie Reien, Norie Hamaguchi-Suzuki, Shota Saito, Yuri Hirayama, Hirofumi Hashimoto, Yoshikatsu Kanai, Tomohiko Ichikawa, Naohiko Anzai
    Cancer science 115(7) 2461-2472 2024年7月  査読有り
    L-type amino acid transporter 1 (LAT1) is specifically expressed in many malignancies, contributes to the transport of essential amino acids, such as leucine, and regulates the mammalian target of rapamycin (mTOR) signaling pathway. We investigated the expression profile and functional role of LAT1 in prostate cancer using JPH203, a specific inhibitor of LAT1. LAT1 was highly expressed in castration-resistant prostate cancer (CRPC) cells, including C4-2 and PC-3 cells, but its expression level was low in castration-sensitive LNCaP cells. JPH203 significantly inhibited [14C] leucine uptake in CRPC cells but had no effect in LNCaP cells. JPH203 inhibited the proliferation, migration, and invasion of CRPC cells but not of LNCaP cells. In C4-2 cells, Cluster of differentiation (CD) 24 was identified by RNA sequencing as a novel downstream target of JPH203. CD24 was downregulated in a JPH203 concentration-dependent manner and suppressed activation of the Wnt/β-catenin signaling pathway. Furthermore, an in vivo study showed that JPH203 inhibited the proliferation of C4-2 cells in a castration environment. The results of this study indicate that JPH203 may exert its antitumor effect in CRPC cells via mTOR and CD24.
  • Yuri Hirayama, Ha Pham Ngoc Le, Hirofumi Hashimoto, Itsuko Ishii, Schuichi Koizumi, Naohiko Anzai
    eNeuro 11(4) 2024年4月  査読有り筆頭著者責任著者
    A sublethal ischemic episode [termed preconditioning (PC)] protects neurons in the brain against a subsequent severe ischemic injury. This phenomenon is known as brain ischemic tolerance and has received much attention from researchers because of its robust neuroprotective effects. We have previously reported that PC activates astrocytes and subsequently upregulates P2X7 receptors, thereby leading to ischemic tolerance. However, the downstream signals of P2X7 receptors that are responsible for PC-induced ischemic tolerance remain unknown. Here, we show that PC-induced P2X7 receptor-mediated lactate release from astrocytes has an indispensable role in this event. Using a transient focal cerebral ischemia model caused by middle cerebral artery occlusion, extracellular lactate levels during severe ischemia were significantly increased in mice who experienced PC; this increase was dependent on P2X7 receptors. In addition, the intracerebroventricular injection of lactate protected against cerebral ischemic injury. In in vitro experiments, although stimulation of astrocytes with the P2X7 receptor agonist BzATP had no effect on the protein levels of monocarboxylate transporter (MCT) 1 and MCT4 (which are responsible for lactate release from astrocytes), BzATP induced the plasma membrane translocation of these MCTs via their chaperone CD147. Importantly, CD147 was increased in activated astrocytes after PC, and CD147-blocking antibody abolished the PC-induced facilitation of astrocytic lactate release and ischemic tolerance. Taken together, our findings suggest that astrocytes induce ischemic tolerance via P2X7 receptor-mediated lactate release.
  • Shota Saito, Hirofumi Hashimoto, Hidefumi Wakashin, Misaki Ishibane, Sangjon Pae, Shinpei Saito, Yoshie Reien, Yuri Hirayama, Yoshiteru Seo, Takashi Mizushima, Naohiko Anzai
    Brain research bulletin 110788 2023年11月  査読有り
    Xenin is a 25-amino acid peptide identified in human gastric mucosa, which is widely expressed in peripheral and central tissues. It is known that the central or peripheral administration of xenin decreases food intake in rodents. Nesfatin-1/NUCB2 (nesfatin-1) has been identified as an anorexic neuropeptide, it is often found co-localized with many peptides in the central nervous system. After the intracerebroventricular administration of xenin on nesfain-1-like immunoreactivity (LI) neurons, we examined its effects on food intake and water intake in rats. As a result, Fos-LI neurons were observed in the organum vasculosum of the laminae terminalis (OVLT), the median preoptic nucleus (MnPO), the subfornical organ (SFO), the supraoptic nucleus (SON), the paraventricular nucleus (PVN), the arcuate nucleus (Arc), the lateral hypothalamic area (LHA), the central amygdaloid nucleus (CAN), the dorsal raphe nucleus (DR), the locus coeruleus (LC), the area postrema (AP) and the nucleus of the solitary tract (NTS). After the administration, the number of Fos-LI neurons was significantly increased in the LC and the OVLT, the MnPO, the SFO, the SON, the PVN, the Arc, the LHA, the CAN, the DR, the AP and the NTS, compared with the control group. After the administration of xenin, we conducted double immunohistochemistry for Fos and nesfatin-1, and found that the number of nesfatin-1-LI neurons expressing Fos were significantly increased in the SON, the PVN, the Arc, the LHA, the CAN, the DR, the AP and the NTS, compared with the control group. The pretreatment of nesfatin-1 antisense significantly attenuated this xenin-induced feeding suppression, while that of nesfatin-1 missense showed no improvement. These results indicate that central administered xenin may have anorexia effects associated with activated central nesfatin-1 neurons.
  • Misaki Ishibane, Hirofumi Hashimoto, Meika Kaneko, Shota Saito, Sangjon Pae, Shinpei Saito, Yoshie Reien, Yuri Hirayama, Nobuyo Higashi-Kuwata, Hiroaki Mitsuya, Naohiko Anzai
    Journal of pharmacological sciences 150(4) 201-203 2022年12月  査読有り
    Currently, the emergence of drug resistance is an important issue in the treatment of hepatitis B virus (HBV). Recently, our collaborating group developed a novel long-acting anti-HBV drug, E-CFCP. However, until this study, the effects of E-CFCP in the kidney have remained unclarified. Using cell viability and uptake assays, we examined the effects of E-CFCP on the function of renal organic anion transporters (OATs). No cytotoxicity was shown related to the E-CFCP in the renal OATs in either assay. Thus, this study suggested that E-CFCP may be a novel, excellent candidate drug for the treatment of drug-resistant HBV.
  • Sangjon Pae, Shinichi Sakamoto, Xue Zhao, Shinpei Saito, Takaaki Tamura, Yusuke Imamura, Tomokazu Sazuka, Yoshie Reien, Yuri Hirayama, Hirofumi Hashimoto, Yoshikatsu Kanai, Tomohiko Ichikawa, Naohiko Anzai
    Journal of pharmacological sciences 150(4) 251-258 2022年12月  査読有り
    Amino acid transporters are responsible for the uptake of amino acids, critical for cell proliferation. L-type amino acid transporters play a major role in the uptake of essential amino acids. L-type amino acid transporter 1 (LAT1) exerts its functional properties by forming a dimer with 4F2hc. Utilizing this cancer-specificity, research on diagnostic imaging and therapeutic agents for malignant tumors targeting LAT1 progresses in various fields. In hormone-sensitive prostate cancer, the up-regulation of L-type amino acid transporter 3 (LAT3) through the androgen receptor (AR) has been identified. On the other hand, in castration-resistant prostate cancer, the negative regulation of LAT1 through AR has been determined. Furthermore, 4F2hc: a binding partner of LAT1, was identified as the specific downstream target of Androgen Receptor Splice Variant 7: AR-V7. LAT1 has been suggested to contribute to acquiring castration resistance in prostate cancer, making LAT1 a completely different therapeutic target from anti-androgens and taxanes. Increased expression of LAT1 has also been found in renal and bladder cancers, suggesting a contribution to acquiring malignancy and progression. In Japan, clinical trials of LAT1 inhibitors for solid tumors are in progress, and clinical applications are now underway. This article will summarize the relationship between LAT1 and urological malignancies.
  • Koizumi S, Hirayama Y
    Neurochemical research 47(9) 2522-2528 2022年8月3日  査読有り
    Ischemic tolerance is a phenomenon in which resistance to subsequent invasive ischemia is acquired by a preceding noninvasive ischemic application, and is observed in many organs, including the brain, the organ most vulnerable to ischemic insult. To date, much research has been conducted on cerebral ischemic tolerance as a cell-autonomous action of neurons. In this article, we review the essential roles of microglia and astrocytes in the acquisition of ischemic tolerance through neuron-non-autonomous mechanisms, where the two types of glial cells function in a concerted manner to induce ischemic tolerance.
  • Hirayama Y, Anzai N, Kinouchi H, Koizumi S
    Molecules 27(12) 3655 2022年  査読有り筆頭著者
  • Tanaka M, Shigetomi E, Parajuli B, Nagatomo H, Shinozaki Y, Hirayama Y, Saito K, Kubota Y, Danjo Y, Lee JH, Kim SK, Nabekura J, Koizumi S.
    Glia 69(11) 2546-2558 2021年  査読有り
    Metabotropic glutamate receptor 5 (mGluR5) in astrocytes is a key molecule for controlling synapse remodeling. Although mGluR5 is abundant in neonatal astrocytes, its level is gradually down-regulated during development and is almost absent in the adult. However, in several pathological conditions, mGluR5 re-emerges in adult astrocytes and contributes to disease pathogenesis by forming uncontrolled synapses. Thus, controlling mGluR5 expression in astrocyte is critical for several diseases, but the mechanism that regulates mGluR5 expression remains unknown. Here, we show that adenosine triphosphate (ATP)/adenosine-mediated signals down-regulate mGluR5 in astrocytes. First, in situ Ca2+ imaging of astrocytes in acute cerebral slices from post-natal day (P)7-P28 mice showed that Ca2+ responses evoked by (S)-3,5-dihydroxyphenylglycine (DHPG), a mGluR5 agonist, decreased during development, whereas those evoked by ATP or its metabolite, adenosine, increased. Second, ATP and adenosine suppressed expression of the mGluR5 gene, Grm5, in cultured astrocytes. Third, the decrease in the DHPG-evoked Ca2+ responses was associated with down-regulation of Grm5. Interestingly, among several adenosine (P1) receptor and ATP (P2) receptor genes, only the adenosine A2B receptor gene, Adora2b, was up-regulated in the course of development. Indeed, we observed that down-regulation of Grm5 was suppressed in Adora2b knockout astrocytes at P14 and in situ Ca2+ imaging from Adora2b knockout mice indicated that the A2B receptor inhibits mGluR5 expression in astrocytes. Furthermore, deletion of A2B receptor increased the number of excitatory synapse in developmental stage. Taken together, the A2B receptor is critical for down-regulation of mGluR5 in astrocytes, which would contribute to terminate excess synaptogenesis during development.
  • Hirayama Y, Anzai N, Koizumi S.
    Glia 69(9) 2100-2110 2021年  査読有り筆頭著者
  • Morio H, Reien Y, Hirayama Y, Hashimoto H, Anzai N.
    The Journal of Physiological Sciences 71(1) 11 2021年  査読有り
    <title>Abstract</title>L-type amino acid transporter 2 (LAT2) is a Na+-independent neutral amino acid transporter, whose function regulation system remains unclarified. Since protein kinase C (PKC) is known to regulate the functions of various transporters, we investigated whether human LAT2 (hLAT2) function is regulated by PKC. In mouse proximal tubule S2 cells, hLAT2 transport activity was upregulated by PKC activation. However, we found that the mRNA and protein expression of hLAT2 was not affected by PKC activation and that the upregulation was independent of the three potential PKC consensus sites in the hLAT2 amino acid sequence. Moreover, we found that PKC activation upregulated the <italic>Vmax</italic> value for hLAT2-mediated alanine transport, which was not accompanied by the induction of hLAT2 membrane insertion. In conclusion, we showed that hLAT2 function is upregulated by PKC activation, which is not related to either the de novo synthesis, the phosphorylation or the membrane insertion of hLAT2.
  • Kaneko M, Reien Y, Morio H, Fukuuchi T, Kaneko K, Hirayama Y, Hashimoto H, Kuwata N, Mitsuya H, Anzai N.
    Journal of Pharmacological Sciences 146(2) 82-87 2021年  査読有り
    Islatravir (ISL; 4'-ethynyl-2-fluoro-2'-deoxyadenosine or EFdA) is a novel reverse transcriptase translocation inhibitor and has a unique structure and high antiviral activity against wild-type and multidrug resistant HIV strains. In this study, we investigated whether islatravir (ISL) can cause kidney damage compared to tenofovir disoproxil fumarate (TDF) and tenofovir (TFV). We also investigated interactions of these drugs with organic anion transporters (OATs). There is a large gap in ISL concentration between the pharmacological dose to proximal tubular cells and the clinical dose. ISL is unlikely to be taken up via OAT1 or OAT3; therefore, OAT1 and OAT3 may not be involved in the injury to tubular cells. Present data strongly suggests that ISL is not toxic to proximal tubules because blood levels of ISL are not high enough to cause kidney damage in the clinical setting.
  • Hayashi MK, Nishioka T, Shimizu H, Takahashi K, Kakegawa W, Mikami T, Hirayama Y, Koizumi S, Yoshida S, Yuzaki M, Tammi M, Sekino Y, Kaibuchi K, Shigemoto-Mogami Y, Yasui M, Sato K.
    Journal of neurochemistry 150(3) 249-263 2019年8月  査読有り
    Hyaluronan is synthesized, secreted, and anchored by hyaluronan synthases (HAS) at the plasma membrane and comprises the backbone of perineuronal nets around neuronal soma and dendrites. However, the molecular targets of hyaluronan to regulate synaptic transmission in the central nervous system have not been fully identified. Here, we report that hyaluronan is a negative regulator of excitatory signals. At excitatory synapses, glutamate is removed by glutamate transporters to turn off the signal and prevent excitotoxicity. Hyaluronan synthesized by HAS supports the activity of glial glutamate transporter 1 (GLT1). GLT1 also retracted from cellular processes of cultured astrocytes after hyaluronidase treatment and hyaluronan synthesis inhibition. A serial knockout study showed that all three HAS subtypes recruit GLT1 to cellular processes. Furthermore, hyaluronidase treatment activated neurons in a dissociated rat hippocampal culture and caused neuronal damage due to excitotoxicity. Our findings reveal that hyaluronan helps to turn off excitatory signals by supporting glutamate clearance. Cover Image for this issue: doi: 10.1111/jnc.14516.
  • Kinoshita M, Hirayama Y, Fujishita K, Shibata K, Shinozaki Y, Shigetomi E, Takeda A, Le HPN, Hayashi H, Hiasa M, Moriyama Y, Ikenaka K, Tanaka KF, Koizumi S.
    EBioMedicine 32 72-83 2018年6月  査読有り
    Although psychotropic drugs act on neurons and glial cells, how glia respond, and whether glial responses are involved in therapeutic effects are poorly understood. Here, we show that fluoxetine (FLX), an anti-depressant, mediates its anti-depressive effect by increasing the gliotransmission of ATP. FLX increased ATP exocytosis via vesicular nucleotide transporter (VNUT). FLX-induced anti-depressive behavior was decreased in astrocyte-selective VNUT-knockout mice or when VNUT was deleted in mice, but it was increased when astrocyte-selective VNUT was overexpressed in mice. This suggests that VNUT-dependent astrocytic ATP exocytosis has a critical role in the therapeutic effect of FLX. Released ATP and its metabolite adenosine act on P2Y11 and adenosine A2b receptors expressed by astrocytes, causing an increase in brain-derived neurotrophic factor in astrocytes. These findings suggest that in addition to neurons, FLX acts on astrocytes and mediates its therapeutic effects by increasing ATP gliotransmission.
  • Ihara T, Mitsui T, Nakamura Y, Kanda M, Tsuchiya S, Kira S, Nakagomi H, Sawada N, Hirayama Y, Shibata K, Shigetomi E, Shinozaki Y, Yoshiyama M, Nakao A, Takeda M, Koizumi S.
    Neurourology and urodynamics 37(3) 942-951 2018年3月  査読有り
    AIMS: To investigate circadian gene expressions in the mouse bladder urothelium to establish an experimental model and study the functions of the circadian rhythm. METHODS: The gene expression rhythms of the clock genes, mechano-sensors such as Piezo1 and TRPV4, ATP release mediated molecules (ARMM) such as Cx26 and VNUT were investigated in mouse primary cultured urothelial cells (UCs) of wild-type (WT) and Clock mutant (ClockΔ19/Δ19 ) mice using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) and western blotting analysis. The long-term oscillation of the clock genes in UC was investigated by measuring bioluminescence from UC isolated from Period2luciferase knock-in mice (Per2::luc) and Per2::luc with ClockΔ19/Δ19 using a luminometer. The mRNA expression rhythms after treatment with Clock short interfering RNA (siRNA) were also measured to compare differences between Clock point mutations and Clock deficiency. RESULTS: The UCs from WT mice showed the time-dependent gene expressions for clock genes, mechano-sensors, and ARMM. The abundances of the products of these genes also correlated with the mRNA expression rhythms in UCs. The bioluminescence of Per2::Luc in UCs showed a circadian rhythm. By contrast, all the gene expressions rhythms observed in WT mice were abrogated in the ClockΔ19/Δ19 mice. Transfection with Clock siRNA in UCs had the same effect as the Clock mutation. CONCLUSIONS: We demonstrated that the time-dependent gene expressions, including clock genes, mechano-sensors, and ARMM, were reproducible in UCs. These findings demonstrated that UCs have the potential to progress research into the circadian functions of the lower urinary tract regulated by clock genes.
  • Ihara T, Mitsui T, Nakamura Y, Kanda M, Tsuchiya S, Kira S, Nakagomi H, Sawada N, Kamiyama M, Hirayama Y, Shigetomi E, Shinozaki Y, Yoshiyama M, Nakao A, Takeda M, Koizumi S
    Scientific Reports 8(1) 5699-5699 2018年  査読有り
  • Koizumi S, Hirayama Y, Morizawa YM
    Neurochemistry International 2018年  査読有り
  • Hirayama Y, Koizumi S.
    Neuroscience Research 126 53-59 2018年1月1日  査読有り筆頭著者
    A mild non-lethal ischemic episode can induce resistance to a subsequent severe ischemic injury in the brain. This phenomenon is termed ischemic tolerance or ischemic preconditioning, and is an endogenous mechanism that can provide robust neuroprotection. Because of its neuroprotective effects against cerebral ischemia or stroke, ischemic tolerance has been widely studied. However, almost all studies have been performed from the viewpoint of neurons. Accumulating evidence suggests that glial cells have various roles in regulation of brain function, including modulation of synaptic transmission, neuronal excitation, and neuronal structure. In addition, astrocytes are closely related to homeostasis, stability of brain function, and protection of neurons. However, glial cells have received only limited attention with regard to ischemic tolerance. Cross-ischemic preconditioning is a phenomenon whereby non-ischemic preconditioning such as mechanical, thermal, and chemical treatment can induce ischemic tolerance. Of these, chemical treatments that affect the immune system can strongly induce ischemic tolerance, suggesting that glial cells may have important roles in this process. Indeed, we and others have demonstrated that glial cells, especially astrocytes, play a pivotal role in the induction of ischemic tolerance. This glial-mediated ischemic tolerance provides a robust and long-lasting neuroprotection against ischemic injury. In this review, we discuss the mechanisms underlying glial-mediated ischemic tolerance, as well as its potential benefits, problems, and therapeutic application.
  • Morizawa YM, Hirayama Y, Ohno N, Shibata S, Shigetomi E, Sui Y, Nabekura J, Sato K, Okajima F, Takebayashi H, Okano H, Koizumi S.
    NATURE COMMUNICATIONS 8(1) 2017年11月  査読有り
  • Ihara T, Mitsui T, Nakamura Y, Kira S, Miyamoto T, Nakagomi H, Sawada N, Hirayama Y, Shibata K, Shigetomi E, Shinozaki Y, Yoshiyama M, Andersson KE, Nakao A, Takeda M, Koizumi S.
    NEUROUROLOGY AND URODYNAMICS 36(4) 1034-1038 2017年4月  査読有り
    AimsThe pathophysiologies of nocturia (NOC) and nocturnal polyuria (NP) are multifactorial and their etiologies remain unclear in a large number of patients. Clock genes exist in most cells and organs, and the products of Clock regulate circadian rhythms as representative clock genes. Clock genes regulate lower urinary tract function, and a newly suggested concept is that abnormalities in clock genes cause lower urinary tract symptoms. In the present study, we investigated the voiding behavior of Clock mutant (Clock(19/19)) mice in order to determine the effects of clock genes on NOC/NP. MethodsMale C57BL/6 mice aged 8-12 weeks (WT) and male C57BL/6 Clock(19/19) mice aged 8 weeks were used. They were bred under 12hr light/dark conditions for 2 weeks and voiding behavior was investigated by measuring water intake volume, urine volume, urine volume/void, and voiding frequency in metabolic cages in the dark and light periods. ResultsNo significant differences were observed in behavior patterns between Clock(19/19) and WT mice. Clock(19/19) mice showed greater voiding frequencies and urine volumes during the sleep phase than WT mice. The diurnal change in urine volume/void between the dark and light periods in WT mice was absent in Clock(19/19) mice. Additionally, functional bladder capacity was significantly lower in Clock(19/19) mice than in WT mice. ConclusionsWe demonstrated that Clock(19/19) mice showed the phenotype of NOC/NP. The Clock(19/19) mouse may be used as an animal model of NOC and NP. Neurourol. Urodynam. 36:1034-1038, 2017. (c) 2016 Wiley Periodicals, Inc.
  • Hirayama Y, Koizumi S
    Glia 65(3) 523-530 2017年3月  査読有り筆頭著者
  • Ihara T, Mitsui T, Nakamura Y, Kira S, Nakagomi H, Sawada N, Hirayama Y, Shibata K, Shigetomi E, Shinozaki Y, Yoshiyama M, Andersson KE, Nakao A, Takeda M, Koizumi S.
    PLOS ONE 12(1) 2017年1月  査読有り
    Objectives Clock(Delta 19/Delta 19) mice is an experimental model mouse for nocturia (NOC). Using the bladder mucosa obtained from Clock(Delta 19/Delta 19) mice, we investigated the gene expression rhythms of mechanosensory cation channels such as transient receptor potential cation channel subfamily V member 4 (TRPV4) and Piezol, and main ATP release pathways including vesicular nucleotide transporter (VNUT) and Connexin26(Cx26), in addition to clock genes. Materials and methods Eight-to twelve-week-old male C57BL/6 mice (WT) and age-and sex-matched C57BL/6 Clock(Delta 19/Delta 19) mice, which were bred under 12-h light/dark conditions for 2 weeks, were used. Gene expression rhythms and transcriptional regulation mechanisms in clock genes, mechanosensor, Cx26 and VNUTwere measured in the mouse bladder mucosa, collected every 4 hours from WT and Clock(Delta 19/Delta 19) mice using quantitative RT-PCR, a Western blot analysis, and ChIP assays. Results WT mice showed circadian rhythms in clock genes as well as mechanosensor, Cx26 and VNUT. Their expression was low during the sleep phase. The results of ChIP assays showed Clock protein binding to the promotor regions and the transcriptional regulation of mechanosensor, Cx26 and VNUT. In contrast, all of these circadian expressions were disrupted in Clock(Delta 19/Delta 19) mice. The gene expression of mechanosensor, Cx26 and VNUT was maintained at a higher level in spite of the sleep phase. Conclusions Mechanosensor, Cx26 and VNUTexpressed with circadian rhythm in the mouse bladder mucosa. The disruption of circadian rhythms in these genes, induced by the abnormalities in clock genes, may be factors contributing to NOC because of hypersensitivity to bladder wall extension.
  • Hirayama Y, Ikeda-Matsuo Y, Notomi S, Enaida H, Kinouchi H, Koizumi S
    JOURNAL OF NEUROSCIENCE 35(9) 3794-3805 2015年3月  査読有り筆頭著者
    Preconditioning (PC) using a preceding sublethal ischemic insult is an attractive strategy for protecting neurons by inducing ischemic tolerance in the brain. Although the underlying molecular mechanisms have been extensively studied, almost all studies have focused on neurons. Here, using a middle cerebral artery occlusion model in mice, we show that astrocytes play an essential role in the induction of brain ischemic tolerance. PC caused activation of glial cells without producing any noticeable brain damage. The spatiotemporal pattern of astrocytic, but not microglial, activation correlated well with that of ischemic tolerance. Interestingly, such activation in astrocytes lasted at least 8 weeks. Importantly, inhibiting astrocytes with fluorocitrate abolished the induction of ischemic tolerance. To investigate the underlying mechanisms, we focused on the P2X7 receptor as a key molecule in astrocyte-mediated ischemic tolerance. P2X7 receptors were dramatically upregulated in activated astrocytes. PC-induced ischemic tolerance was abolished in P2X7 receptor knock-out mice. Moreover, our results suggest that hypoxia-inducible factor-1 alpha, a well known mediator of ischemic tolerance, is involved in P2X7 receptor-mediated ischemic tolerance. Unlike previous reports focusing on neuron-based mechanisms, our results show that astrocytes play indispensable roles in inducing ischemic tolerance, and that upregulation of P2X7 receptors in astrocytes is essential.
  • Yosuke Morizawa, Yuri Hirayama, Shinsuke Shibata, Gu Ben, Wiley James, Hideyuki Okano, Schuichi Koizumi
    JOURNAL OF PHARMACOLOGICAL SCIENCES 121 74P-74P 2013年  
  • Ikeda-Matsuo Y, Tanji H, Ota A, Hirayama Y, Uematsu S, Akira S, Sasaki Y.
    BRITISH JOURNAL OF PHARMACOLOGY 160(4) 847-859 2010年6月  査読有り
    Background and purpose: Although microsomal prostaglandin E synthase (mPGES)-1 is known to contribute to stroke injury, the underlying mechanisms remain poorly understood. This study examines the hypothesis that EP3 receptors contribute to stroke injury as downstream effectors of mPGES-1 neurotoxicity through Rho kinase activation. Experimental approach: We used a glutamate-induced excitotoxicity model in cultured rat and mouse hippocampal slices and a mouse middle cerebral artery occlusion-reperfusion model. Effects of an EP3 receptor antagonist on neuronal damage in mPGES-1 knockout (KO) mice was compared with that in wild-type (WT) mice. Key results: In cultures of rat hippocampal slices, the mRNAs of EP1-4 receptors were constitutively expressed and only the EP3 receptor antagonist ONO-AE3-240 attenuated and only the EP3 receptor agonist ONO-AE-248 augmented glutamate-induced excitotoxicity in CA1 neurons. Hippocampal slices from mPGES-1 KO mice showed less excitotoxicity than those from WT mice and the EP3 receptor antagonist did not attenuate the excitotoxicity. In transient focal ischaemia models, injection (i.p.) of an EP3 antagonist reduced infarction, oedema and neurological dysfunction in WT mice, but not in mPGES-1 KO mice, which showed less injury than WT mice. EP3 receptor agonist-induced augmentation of excitotoxicity in vitro was ameliorated by the Rho kinase inhibitor Y-27632 and Pertussis toxin. The Rho kinase inhibitor HA-1077 also ameliorated stroke injury in vivo. Conclusion and implications: Activity of mPGES-1 exacerbated stroke injury through EP3 receptors and activation of Rho kinase and/or G(i). Thus, mPGES-1 and EP3 receptors may be valuable therapeutic targets for treatment of human stroke. This article is commented on by Andreasson, pp. 844-846 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2010.00715.x.
  • Ikeda-Matsuo Y, Hirayama Y, Ota A, Uematsu S, Akira S, Sasaki Y.
    BRITISH JOURNAL OF PHARMACOLOGY 159(5) 1174-1186 2010年3月  査読有り
    Background and purpose: Although both microsomal prostaglandin E synthase (mPGES)-1 and cyclooxygenase (COX)-2 are critical factors in stroke injury, but the interactions between these enzymes in the ischaemic brain is still obscure. This study examines the hypothesis that mPGES-1 activity is required for COX-2 to cause neuronal damage in ischaemic injury. Experimental approach: We used a glutamate-induced excitotoxicity model in cultures of rat or mouse hippocampal slices and a mouse middle cerebral artery occlusion-reperfusion model in vivo. The effect of a COX-2 inhibitor on neuronal damage in mPGES-1 knockout (KO) mice was compared with that in wild-type (WT) mice. Key results: In rat hippocampal slices, glutamate-induced excitotoxicity, as well as prostaglandin (PG) E(2) production and PGES activation, was significantly attenuated by either MK-886 or NS-398, inhibitors of mPGES-1 and COX-2 respectively; however, co-application of these inhibitors had neither an additive nor a synergistic effect. The protective effect of NS-398 on the excitotoxicity observed in WT slices was completely abolished in mPGES-1 KO slices, which showed less excitotoxicity than WT slices. In the transient focal ischaemia model, mPGES-1 and COX-2 were co-localized in the infarct region of the cortex. Injection of NS-398 reduced not only ischaemic PGE(2) production, but also ischaemic injuries in WT mice, but not in mPGES-1 KO mice, which showed less dysfunction than WT mice. Conclusion and implications: Microsomal prostaglandin E synthase-1 and COX-2 are co-induced by excess glutamate in ischaemic brain. These enzymes are co-localized and act together to exacerbate stroke injury, by excessive PGE(2) production.

MISC

 14

共同研究・競争的資金等の研究課題

 4