研究者業績

丸山 祐造

マルヤマ ユウゾウ  (Yuzo Maruyama)

基本情報

所属
千葉大学 大学院理学研究院 数学・情報数理学専攻 教授
学位
博士(経済学)(2000年12月 東京大学)
(BLANK)

研究者番号
30304728
J-GLOBAL ID
200901059660043805
researchmap会員ID
1000266546

外部リンク

研究キーワード

 2

受賞

 1

論文

 37
  • Yuzo Maruyama, Takeru Matsuda
    Journal of Multivariate Analysis 2025年3月  査読有り筆頭著者責任著者
  • Yuzo Maruyama
    Stat 13(3) 2024年7月9日  査読有り筆頭著者責任著者
    The original Hotelling-Solomons inequality indicates that an upper bound of |mean - median|/(standard deviation) is 1. In this note, we find a new bound depending on the sample size, which is exactly smaller than 1.
  • Yuzo Maruyama, Akimichi Takemura
    Japanese Journal of Statistics and Data Science 7(1) 361-375 2024年6月14日  査読有り筆頭著者責任著者
    Abstract We consider the estimation of the p-variate normal mean of $$X\sim \mathcal {N}_p(\theta ,I)$$ under the quadratic loss function. We investigate the decision theoretic properties of debiased shrinkage estimator, the estimator which shrinks towards the origin for smaller $$\Vert x\Vert ^2$$ and which is exactly equal to the unbiased estimator X for larger $$\Vert x\Vert ^2$$. Such debiased shrinkage estimator seems superior to the unbiased estimator X, which implies minimaxity. However, we show that it is not minimax under mild conditions.
  • Yuzo Maruyama, William E. Strawderman
    BERNOULLI 29(1) 153-180 2023年2月  査読有り筆頭著者責任著者
  • Yuzo Maruyama, William E. Strawderman
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE 222 78-93 2023年1月  査読有り筆頭著者責任著者

MISC

 10
  • Yuzo Maruyama, Takeru Matsuda
    2023年8月18日  
    This is a follow-up paper of Polson and Scott (2012, Bayesian Analysis), which claimed that the half-Cauchy prior is a sensible default prior for a scale parameter in hierarchical models. For estimation of a normal mean vector under the quadratic loss, they showed that the Bayes estimator with respect to the half-Cauchy prior seems to be minimax through numerical experiments. In terms of the shrinkage coefficient, the half-Cauchy prior has a U-shape and can be interpreted as a continuous spike and slab prior. In this paper, we consider a general class of priors with U-shapes and theoretically establish sufficient conditions for the minimaxity of the corresponding (generalized) Bayes estimators. We also develop an algorithm for posterior sampling and present numerical results.
  • 丸山 祐造
    国民経済雑誌 = Journal of economics & business administration 227(4) 121-133 2023年6月  
  • Yuzo Maruyama, Ryoko Tone, Yasushi Asami
    2015年6月18日  
    We propose a new method of perturbing a major variable by adding noise such<br /> that results of regression analysis are unaffected. The extent of the<br /> perturbation can be controlled using a single parameter, which eases an actual<br /> perturbation application. On the basis of results of a numerical experiment, we<br /> recommend an appropriate value of the parameter that can achieve both<br /> sufficient perturbation to mask original values and sufficient coherence<br /> between perturbed and original data.
  • Yuzo Maruyama
    2015年1月26日  
    Moran&#039;s I statistic, a popular measure of spatial autocorrelation, is<br /> revisited. The exact range of Moran&#039;s I is given as a function of spatial<br /> weights matrix. We demonstrate that some spatial weights matrices lead the<br /> absolute value of upper (lower) bound larger than 1 and that others lead the<br /> lower bound larger than -0.5. Thus Moran&#039;s I is unlike Pearson&#039;s correlation<br /> coefficient. It is also pointed out that some spatial weights matrices do not<br /> allow Moran&#039;s I to take positive values regardless of observations. An<br /> alternative measure with exact range [-1,1] is proposed through a monotone<br /> transformation of Moran&#039;s I.
  • Yuzo Maruyama
    2014年2月3日  
    A new class of minimax Stein-type shrinkage estimators of a multivariate<br /> normal mean is studied where the shrinkage factor is based on an l_p norm. The<br /> proposed estimators allow some but not all coordinates to be estimated by 0<br /> thereby allow sparsity as well as minimaxity.
  • Yuzo Maruyama, William E. Strawderman
    2012年2月20日  
    We study probit regression from a Bayesian perspective and give an<br /> alternative form for the posterior distribution when the prior distribution for<br /> the regression parameters is the uniform distribution. This new form allows<br /> simple Monte Carlo simulation of the posterior as opposed to MCMC simulation<br /> studied in much of the literature and may therefore be more efficient<br /> computationally. We also provide alternative explicit expression for the first<br /> and second moments. Additionally we provide analogous results for Gaussian<br /> priors.
  • Yuzo Maruyama
    2009年6月24日  
    For the balanced ANOVA setup, we propose a new closed form Bayes factor<br /> without integral representation, which is however based on fully Bayes method,<br /> with reasonable model selection consistency for two asymptotic situations<br /> (either number of levels of the factor or number of replication in each level<br /> goes to infinity). Exact analytical calculation of the marginal density under a<br /> special choice of the priors enables such a Bayes factor.
  • 丸山 祐造, 竹村 彰通
    数学セミナー 46(3) 24-27 2007年3月  

書籍等出版物

 3
  • Yuzo Maruyama, Tatsuya Kubokawa, William E. Strawderman (担当:共著)
    Springer 2023年10月 (ISBN: 9789819960767)
  • 村山, 祐司, 柴崎, 亮介 (担当:分担執筆, 範囲:6章「空間統計学入門」)
    朝倉書店 2008年4月 (ISBN: 9784254168310)
  • 岡部, 篤行, 浅見, 泰司, 伊藤, 香織, 宮崎, 千尋, 柴崎, 亮介, 瀬崎, 薫, 有川, 正俊, 八田, 達夫, 丸山, 祐造, 統計情報研究開発センター (担当:分担執筆, 範囲:4.3節 ヘドニック型価格指数へのリッジ回帰推定量の適用)
    統計情報研究開発センター 2004年4月 (ISBN: 4925079611)

講演・口頭発表等

 5

共同研究・競争的資金等の研究課題

 18