大学院園芸学研究院

島田 貴士

シマダ タカシ  (Shimada Takashi)

基本情報

所属
千葉大学 大学院園芸学研究院 准教授
学位
博士(理学)(京都大学)

研究者番号
10713828
J-GLOBAL ID
201601009663895380
researchmap会員ID
B000256373

分子生体機能学研究室の私たちは、
植物の細胞を見ることにより,様々な生命現象を解き明かす研究を行っています.
特に,脂質貯蔵に関わる細胞小器官・油滴(Lipid droplet)に興味を持っています.
興味のある方は,是非一度,研究室にお越しください.

 

<研究概要>

植物脂質は、植物自身にとっても、私たちの生活にとっても大切な栄養素です。

私たちの最終目標は、「脂質をたくさん作る植物を作る」ことです。
植物脂質の需要は世界規模で高まっています。
・食料資源となる脂質をたくさん作る
・有用な微量脂質を増産する
上記は私たちの生活に大いに役立ちます(SDGs;飢饉をゼロに、陸の豊かさも守ろう)。

では、どのようにして脂質の増産を達成すればよいのでしょうか?

私たちが着目しているのは、「葉に脂質を高蓄積させる」ことです。
通常、葉は脂質含量が少ないため、脂質の抽出材料としては不向きです。
そこで、葉に脂質を高蓄積させる技術を開発することで、これまで利用されていなかった葉を、脂質の抽出材料として新たに利用することができるようになります。
捨ててしまう葉を材料にできることにより、資源を有効活用することが可能です。

研究の目的

では、どのようにして「葉に脂質を高蓄積させる」のでしょうか?

この目標の達成のために、私たちはまず「基礎研究のレベルにおいて、葉に脂質を高蓄積させることができるか?」という研究に取り組んでいます。
つまり、モデル植物であるシロイヌナズナを用いて、「シロイヌナズナの葉に脂質を高蓄積させる」ことを目指しています。

この実現のために、私たちはシロイヌナズナの変異体の中から、「葉に脂質を高蓄積している変異体」を選抜してきました。
この選抜には、脂質を貯蔵する細胞小器官である油滴を利用しました。
通常、脂質含量の測定には、高度な脂質分析が必要です。
私たちは、脂質含量と油滴数に正の相関があることを利用し、葉に油滴を多く蓄積する変異体を選抜しました。
それにより、「油滴が多い=脂質を多く蓄積する」変異体を複数単離することに成功しました。

これらの変異体を解析することにより、脂質合成制御に関わる遺伝子を発見することができます。
その機能を解析することで、「どのようにすれば脂質増産が可能になるのか」が分かるようになると考えています。



学部3年生のみなさんへ、
以下に島田研で行っている実際の実験の一部を紹介します。

ここでは、蛍光タンパク質を用いたタンパク質の局在解析を紹介しています。
島田研では蛍光顕微鏡を用いた、タンパク質の細胞内局在解析をメインに行っています。
うまくいけば、蛍光タンパク質による綺麗な画像を見ることができます。

 

「島田研究室情報」(左上にあります)にて,近況をお知らせいたします.
https://researchmap.jp/yuzurin/島田研究室情報/

メールアドレス
tlshimada アットマーク chiba-u.jp


学歴

 3

論文

 19
  • Yuto Omata, Reina Sato, Emi Mishiro-Sato, Keiko Kano, Haruko Ueda, Ikuko Hara-Nishimura, Takashi L. Shimada
    Frontiers in Plant Science 15 2024年3月1日  査読有り最終著者責任著者
    Lipid droplets (LDs) are lipid storage organelles in plant leaves and seeds. Seed LD proteins are well known, and their functions in lipid metabolism have been characterized; however, many leaf LD proteins remain to be identified. We therefore isolated LDs from leaves of the leaf LD–overaccumulating mutant high sterol ester 1 (hise1) of Arabidopsis thaliana by centrifugation or co-immunoprecipitation. We then performed LD proteomics by mass spectrometry and identified 3,206 candidate leaf LD proteins. In this study, we selected 31 candidate proteins for transient expression assays using a construct encoding the candidate protein fused with green fluorescent protein (GFP). Fluorescence microscopy showed that MYOSIN BINDING PROTEIN14 (MYOB14) and two uncharacterized proteins localized to LDs labeled with the LD marker. Subcellular localization analysis of MYOB family members revealed that MYOB1, MYOB2, MYOB3, and MYOB5 localized to LDs. LDs moved along actin filaments together with the endoplasmic reticulum. Co-immunoprecipitation of myosin XIK with MYOB2-GFP or MYOB14-GFP suggested that LD-localized MYOBs are involved in association with the myosin XIK–LDs. The two uncharacterized proteins were highly similar to enzymes for furan fatty acid biosynthesis in the photosynthetic bacterium Cereibacter sphaeroides, suggesting a relationship between LDs and furan fatty acid biosynthesis. Our findings thus reveal potential molecular functions of LDs and provide a valuable resource for further studies of the leaf LD proteome.
  • Yu Takahashi, Hiroaki Sakai, Hirotaka Ariga, Shota Teramoto, Takashi L Shimada, Heesoo Eun, Chiaki Muto, Ken Naito, Norihiko Tomooka
    Frontiers in plant science 14 1119625-1119625 2023年  査読有り
    To increase food production under the challenges presented by global climate change, the concept of de novo domestication-utilizing stress-tolerant wild species as new crops-has recently gained considerable attention. We had previously identified mutants with desired domestication traits in a mutagenized population of the legume Vigna stipulacea Kuntze (minni payaru) as a pilot for de novo domestication. Given that there are multiple stress-tolerant wild legume species, it is important to establish efficient domestication processes using reverse genetics and identify the genes responsible for domestication traits. In this study, we identified VsPSAT1 as the candidate gene responsible for decreased hard-seededness, using a Vigna stipulacea isi2 mutant that takes up water from the lens groove. Scanning electron microscopy and computed tomography revealed that the isi2 mutant has lesser honeycomb-like wax sealing the lens groove than the wild-type, and takes up water from the lens groove. We also identified the pleiotropic effects of the isi2 mutant: accelerating leaf senescence, increasing seed size, and decreasing numbers of seeds per pod. While doing so, we produced a V. stipulacea whole-genome assembly of 441 Mbp in 11 chromosomes and 30,963 annotated protein-coding sequences. This study highlights the importance of wild legumes, especially those of the genus Vigna with pre-existing tolerance to biotic and abiotic stresses, for global food security during climate change.
  • Takashi L. Shimada, Takashi Ueda, Ikuko Hara-Nishimura
    Plant Signaling & Behavior 16(4) 1872217-1872217 2021年1月15日  査読有り筆頭著者責任著者
  • Takehiko Kanazawa, Hatsune Morinaka, Kazuo Ebine, Takashi L. Shimada, Sakiko Ishida, Naoki Minamino, Katsushi Yamaguchi, Shuji Shigenobu, Takayuki Kohchi, Akihiko Nakano, Takashi Ueda
    Nature Communications 11(1) 6152-6152 2020年12月  査読有り
    <title>Abstract</title>Eukaryotic cells acquired novel organelles during evolution through mechanisms that remain largely obscure. The existence of the unique oil body compartment is a synapomorphy of liverworts that represents lineage-specific acquisition of this organelle during evolution, although its origin, biogenesis, and physiological function are yet unknown. We find that two paralogous syntaxin-1 homologs in the liverwort <italic>Marchantia polymorpha</italic> are distinctly targeted to forming cell plates and the oil body, suggesting that these structures share some developmental similarity. Oil body formation is regulated by an ERF/AP2-type transcription factor and loss of the oil body increases <italic>M</italic>. <italic>polymorpha</italic> herbivory. These findings highlight a common strategy for the acquisition of organelles with distinct functions in plants, via periodical redirection of the secretory pathway depending on cellular phase transition.
  • Takashi L. Shimada, Katsushi Yamaguchi, Shuji Shigenobu, Hiro Takahashi, Masataka Murase, Shuichi Fukuyoshi, Ikuko Hara-Nishimura
    Journal of Plant Research 133(3) 383-392 2020年5月  査読有り筆頭著者責任著者
    © 2020, The Botanical Society of Japan. Sterols are important lipid constituents of cellular membranes in plants and other organisms. Sterol homeostasis is under strict regulation in plants because excess sterols negatively impact plant growth. HIGH STEROL ESTER 1 (HISE1) functions as a negative regulator of sterol accumulation. If sterol production exceeds a certain threshold, excess sterols are detoxified via conversion to sterol esters by PHOSPHOLIPID STEROL ACYL TRANSFERASE 1 (PSAT1). We previously reported that the Arabidopsis thaliana double mutant hise1-3 psat1-2 shows 1.5-fold higher sterol content than the wild type and consequently a severe growth defect. However, the specific defects caused by excess sterol accumulation in plants remain unknown. In this study, we investigated the effects of excess sterols on plants by analyzing the phenotypes and transcriptomes of the hise1-3 psat1-2 double mutant. Transcriptomic analysis revealed that 435 genes were up-regulated in hise1-3 psat1-2 leaves compared with wild-type leaves. Gene ontology (GO) enrichment analysis revealed that abiotic and biotic stress-responsive genes including RESPONSIVE TO DESICCATION 29B/LOW-TEMPERATURE-INDUCED 65 (RD29B/LTI65) and COLD-REGULATED 15A (COR15A) were up-regulated in hise1-3 psat1-2 leaves compared with wild-type leaves. Expression levels of senescence-related genes were also much higher in hise1-3 psat1-2 leaves than in wild-type leaves. hise1-3 psat1-2 leaves showed early senescence, suggesting that excess sterols induce senescence of leaves. In the absence of sucrose, hise1-3 psat1-2 exhibited defects in seedling growth and root elongation. Together, our data suggest that excess sterol accumulation disrupts cellular activities of vegetative organs including leaves and roots, resulting in multiple damages to plants.

MISC

 10

書籍等出版物

 1

講演・口頭発表等

 59

共同研究・競争的資金等の研究課題

 14

産業財産権

 2

社会貢献活動

 1