研究者業績

張 北辰

チョウ ホクシン  (BEICHEN ZHANG)

基本情報

所属
千葉大学 環境リモートセンシング研究センター 特任研究員
学位
博士(工学)(2025年3月 千葉大学)

研究者番号
11020652
ORCID ID
 https://orcid.org/0000-0001-9378-0250
J-GLOBAL ID
202501011715508189
researchmap会員ID
R000084331

外部リンク

論文

 9
  • Munseon Beak, Kazuhito Ichii, Yuhei Yamamoto, Ruci Wang, Beichen Zhang, Ram C. Sharma, Tetsuya Hiyama
    Progress in Earth and Planetary Science 12(1) 2025年1月6日  査読有り
    Abstract Understanding the land cover is crucial to comprehending the functioning of the Earth’s system. The land cover of Siberia is characterized by uncertainty because it is wide-ranging and comprises various classification types. However, comparisons among land cover products reveal substantial discrepancies and uncertainties. Therefore, a reliable land cover product for Siberia is necessary. In this study, we generated new land cover data for Siberia using random forest (RF) classifiers with global land cover datasets. To assess their accuracy and characteristics, we individually validated global land cover products in Siberia using multi-source sample datasets. We trained the RF classifiers with multiple land cover products to produce a more precise land cover product for Siberia. The validations showed that: (a) the generated new land cover data achieved the highest overall accuracy (85.04%) and kappa coefficient (82.62%); (b) the classifications of mixed forest (user accuracy: 97.85%) and grasses (user accuracy: 94.85%) demonstrated improvements, showing higher performance compared to most other types; and (c) by comparing the distribution of land cover across climate zones, we discovered that temperature is a critical factor throughout Siberia. However, in warm summer climates, precipitation plays a critical role in vegetation distribution. The more accurate and detailed land cover created in this study enhances the reliability of analyses in Siberia and fosters a deeper understanding of the impact of the carbon cycle.
  • Beichen Zhang, Kazuhito Ichii, Wei Li, Yuhei Yamamoto, Wei Yang, Ram C. Sharma, Hiroki Yoshioka, Kenta Obata, Masayuki Matsuoka, Tomoaki Miura
    Remote Sensing of Environment 316 114491-114491 2025年1月  査読有り筆頭著者
  • Wei LI, Kazuhito ICHII, Beichen ZHANG, Yuhei YAMAMOTO, Wei YANG, Tomoaki MIURA, Hiroki YOSHIOKA, Masayuki MATSUOKA, Kenta OBATA, Ram C. SHARMA, Hirokazu YAMAMOTO, Hitoshi IRIE, Pradeep KHATRI, Ben LILEY, Isamu MORINO, Hideaki TAKENAKA, Atsushi HIGUCHI
    Journal of the Meteorological Society of Japan. Ser. II 103(1) 87-109 2025年  査読有り
  • Beichen Zhang, Junzhi Liu, Bin Zhang, Dawei Xiao, Min Chen
    Environmental Modelling & Software 183 106232-106232 2025年1月  査読有り筆頭著者
  • Zaiyang Ma, Min Chen, Zhong Zheng, Songshan Yue, Zhiyi Zhu, Beichen Zhang, Jin Wang, Fengyuan Zhang, Yongning Wen, Guonian Lü
    GIScience & Remote Sensing 59(1) 914-935 2022年6月6日  査読有り
  • Beichen Zhang, Min Chen, Zaiyang Ma, Zhuo Zhang, Songshan Yue, Dawei Xiao, Zhiyi Zhu, Yongning Wen, Guonian Lü
    Environmental Science and Pollution Research 29(5) 7322-7343 2021年9月2日  査読有り筆頭著者
  • Zaiyang Ma, Min Chen, Songshan Yue, Beichen Zhang, Zhiyi Zhu, Yongning Wen, Guonian Lü, Mingyue Lu
    GIScience & Remote Sensing 58(2) 180-198 2020年12月30日  査読有り
  • Zaiyang Ma, Min Chen, Beichen Zhang, Ming Wang, Chaoran Shen, Songshan Yue, Yongning Wen, Guonian Lü
    Earth and Space Science 6(11) 2142-2159 2019年11月22日  査読有り
    Abstract To facilitate forest research, simulations of the whole forest growth process can be employed to analyze forest dynamics and predict forest yields. Different forest growth models can be integrated for comprehensive process simulation and thus can assist forest growth research. With the development of network technologies, a web environment can provide cross‐platform capability and wide availability for distributed researchers. In order to serve the simulation of complex forest growth processes and help online forest growth research, this article proposes a web‐based integrated modeling and simulation method for forest growth research. The proposed method includes three steps, namely, model preparation, model integration, and forest growth simulation. The corresponding implementation strategies are designed to prepare forest growth models, integrate different models, preprocess model data, and implement forest growth simulations for integrated modeling and simulations via the web. Two applications in the comprehensive prediction of forest growth and comparison of different forest management decisions are introduced to verify the feasibility and capability of the proposed method. The results show that the proposed web‐based integrated modeling and simulation method can be used conveniently for comprehensive simulations of forest growth research.

講演・口頭発表等

 1

共同研究・競争的資金等の研究課題

 1