研究者業績

西田 紀貴

Noritaka Nishida

基本情報

所属
千葉大学 大学院薬学研究院 教授
学位
博士(薬学)(2004年3月 東京大学)

J-GLOBAL ID
202001008926112039
researchmap会員ID
B000382377

研究キーワード

 3

学歴

 4

論文

 37
  • Goro Nishide, Keesiang Lim, Maiki Tamura, Akiko Kobayashi, Qingci Zhao, Masaharu Hazawa, Toshio Ando, Noritaka Nishida, Richard W Wong
    The journal of physical chemistry letters 14(38) 8385-8396 2023年9月28日  
    Open reading frame 6 (ORF6), the accessory protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that suppresses host type-I interferon signaling, possesses amyloidogenic sequences. ORF6 amyloidogenic peptides self-assemble to produce cytotoxic amyloid fibrils. Currently, the molecular properties of the ORF6 remain elusive. Here, we investigate the structural dynamics of the full-length ORF6 protein in a near-physiological environment using high-speed atomic force microscopy. ORF6 oligomers were ellipsoidal and readily assembled into ORF6 protofilaments in either a circular or a linear pattern. The formation of ORF6 protofilaments was enhanced at higher temperatures or on a lipid substrate. ORF6 filaments were sensitive to aliphatic alcohols, urea, and SDS, indicating that the filaments were predominantly maintained by hydrophobic interactions. In summary, ORF6 self-assembly could be necessary to sequester host factors and causes collateral damage to cells via amyloid aggregates. Nanoscopic imaging unveiled the innate molecular behavior of ORF6 and provides insight into drug repurposing to treat amyloid-related coronavirus disease 2019 complications.
  • Qingci Zhao, Ryu Fujimiya, Satoshi Kubo, Christopher B Marshall, Mitsuhiko Ikura, Ichio Shimada, Noritaka Nishida
    Cell reports 32(8) 108074-108074 2020年8月25日  
    The small guanosine triphosphatase (GTPase) RAS serves as a molecular switch in signal transduction, and its mutation and aberrant activation are implicated in tumorigenesis. Here, we perform real-time, in-cell nuclear magnetic resonance (NMR) analyses of non-farnesylated RAS to measure time courses of the fraction of the active GTP-bound form (fGTP) within cytosol of live mammalian cells. The observed intracellular fGTP is significantly lower than that measured in vitro for wild-type RAS as well as oncogenic mutants, due to both decrease of the guanosine diphosphate (GDP)-GTP exchange rate (kex) and increase of GTP hydrolysis rate (khy). In vitro reconstitution experiments show that highly viscous environments promote a reduction of kex, whereas the increase of khy is stimulated by unidentified cytosolic proteins. This study demonstrates the power of in-cell NMR to directly detect the GTP-bound levels of RAS in mammalian cells, thereby revealing that the khy and kex of RAS are modulated by various intracellular factors.
  • Noritaka Nishida, Yuta Komori, Osamu Takarada, Atsushi Watanabe, Satoko Tamura, Satoshi Kubo, Ichio Shimada, Masahide Kikkawa
    Nature communications 11(1) 1038-1038 2020年2月25日  査読有り
    The movements of cytoplasmic dynein on microtubule (MT) tracks is achieved by two-way communication between the microtubule-binding domain (MTBD) and the ATPase domain via a coiled-coil stalk, but the structural basis of this communication remains elusive. Here, we regulate MTBD either in high-affinity or low-affinity states by introducing a disulfide bond to the stalk and analyze the resulting structures by NMR and cryo-EM. In the MT-unbound state, the affinity changes of MTBD are achieved by sliding of the stalk α-helix by a half-turn, which suggests that structural changes propagate from the ATPase-domain to MTBD. In addition, MT binding induces further sliding of the stalk α-helix even without the disulfide bond, suggesting how the MT-induced conformational changes propagate toward the ATPase domain. Based on differences in the MT-binding surface between the high- and low-affinity states, we propose a potential mechanism for the directional bias of dynein movement on MT tracks.
  • Noritaka Nishida, Yutaka Ito, Ichio Shimada
    Biochimica et biophysica acta. General subjects 1864(2) 129364-129364 2020年2月  査読有り
    BACKGROUND: Accumulating evidence from the experimental and computational studies indicated that the functional properties of proteins are different between in vitro and living cells, raising the necessity to examine the protein structure under the native intracellular milieu. To gain structural information of the proteins inside the living cells at an atomic resolution, in-cell NMR method has been developed for the past two decades. SCOPE OF REVIEW: In this review, we will overview the recent progress in the methodological developments and the biological applications of in-cell NMR, and discuss the advances and challenges in this filed. MAJOR CONCLUSIONS: A number of methods were developed to enrich the isotope-labeled proteins inside the cells, enabling the in-cell NMR observation of bacterial cells as well as eukaryotic cells. In-cell NMR has been applied to various biological systems, including de novo structure determinations, protein/protein or protein/drug interactions, and monitoring of chemical reactions exerted by the endogenous enzymes. The bioreactor system, in which the cells in the NMR tube are perfused by fresh culture medium, enabled the long-term in-cell NMR measurements, and the real-time observations of intracellular responses upon external stimuli. GENERAL SIGNIFICANCE: In-cell NMR has become a unique technology for its ability to obtain the function-related structural information of the target proteins under the physiological or pathological cellular environments, which cannot be reconstituted in vitro.
  • Noritaka Nishida, Tomoya Tsukazaki, Daisuke Kohda
    Biochimica et biophysica acta. General subjects 1864(2) 129421-129421 2020年2月  査読有り
  • Noritaka Nishida, Ichio Shimada
    New Developments in NMR 2020-(21) 103-116 2020年  
  • Ayano Mochizuki, Arata Saso, Qingci Zhao, Satoshi Kubo, Noritaka Nishida, Ichio Shimada
    Journal of the American Chemical Society 140(10) 3784-3790 2018年3月14日  査読有り
    To understand how intracellular proteins respond to oxidative stresses, the redox status of the target protein, as well as the intracellular redox potential ( EGSH), which is defined by the concentrations of reduced and oxidized glutathione, should be observed simultaneously within living cells. In this study, we developed a method that can monitor the redox status of thioredoxin (Trx) and EGSH by direct NMR observation of Trx and glutathione within living cells. Unlike the midpoint potential of Trx measured in vitro (∼ -300 mV), the intracellular Trx exhibited the redox transition at EGSH between -250 and -200 mV, the range known to trigger the oxidative stress-mediated signalings. Furthermore, we quantified the contribution of Trx reductase to the redox status of Trx, demonstrating that the redox profile of Trx is determined by the interplay between the elevation of EGSH and the reduction by Trx reductase and other endogenous molecules.
  • Shuxian Huang, Ryo Umemoto, Yuki Tamura, Yutaka Kofuku, Taro Q P Uyeda, Noritaka Nishida, Ichio Shimada
    Scientific reports 6 33690-33690 2016年9月22日  査読有り
    Actin cytoskeleton dynamics are controlled by various actin binding proteins (ABPs) that modulate the polymerization of the monomeric G-actin and the depolymerization of filamentous F-actin. Although revealing the structures of the actin/ABP complexes is crucial to understand how the ABPs regulate actin dynamics, the X-ray crystallography and cryoEM methods are inadequate to apply for the ABPs that interact with G- or F-actin with lower affinity or multiple binding modes. In this study, we aimed to establish the alternative method to build a structural model of G-actin/ABP complexes, utilizing the paramagnetic relaxation enhancement (PRE) experiments. Thymosin β4 (Tβ4) was used as a test case for validation, since its structure in complex with G-actin was reported recently. Recombinantly expressed G-actin, containing a cysteine mutation, was conjugated with a nitroxyl spin label at the specific site. Based on the intensity ratio of the 1H-15N HSQC spectra of Tβ4 in the complex with G-actin in the paramagnetic and diamagnetic states, the distances between the amide groups of Tβ4 and the spin label of G-actin were estimated. Using the PRE-derived distance constraints, we were able to compute a well-converged docking structure of the G-actin/Tβ4 complex that shows great accordance with the reference structure.
  • Noritaka Nishida, Ichio Shimada
    Discoidin Domain Receptors in Health and Disease 57-67 2016年1月1日  
    Discoidin domain receptors (DDRs) are a unique class of receptor tyrosine kinases that is activated by fibrillar collagen. DDR1 and DDR2, the two DDR family isoforms, are single-pass transmembrane proteins, containing the discoidin (DS) domain and the DS-like domain on the extracellular side, and an extremely long juxtamembrane region and the kinase domain on the intracellular side. This chapter provides an overview of the structural knowledge of the DDR receptors.
  • Takashi Suzuki, Miho Suzuki, Shinji Ogino, Ryo Umemoto, Noritaka Nishida, Ichio Shimada
    Proceedings of the National Academy of Sciences of the United States of America 112(22) 6991-6 2015年6月2日  査読有り
    CD44 is the receptor for hyaluronan (HA) and mediates cell rolling under fluid shear stress. The HA-binding domain (HABD) of CD44 interconverts between a low-affinity, ordered (O) state and a high-affinity, partially disordered (PD) state, by the conformational change of the C-terminal region, which is connected to the plasma membrane. To examine the role of tensile force on CD44-mediated rolling, we used a cell-free rolling system, in which recombinant HABDs were attached to beads through a C-terminal or N-terminal tag. We found that the rolling behavior was stabilized only at high shear stress, when the HABD was attached through the C-terminal tag. In contrast, no difference was observed for the beads coated with HABD mutants that constitutively adopt either the O state or the PD state. Steered molecular dynamics simulations suggested that the force from the C terminus disrupts the interaction between the C-terminal region and the core of the domain, thus providing structural insights into how the mechanical force triggers the allosteric O-to-PD transition. Based on these results, we propose that the force applied from the C terminus enhances the HABD-HA interactions by inducing the conformational change to the high-affinity PD transition more rapidly, thereby enabling CD44 to mediate lymphocyte trafficking and hematopoietic progenitor cell homing under high-shear conditions.
  • Osamu Takarada, Noritaka Nishida, Masahide Kikkawa, Ichio Shimada
    Biomolecular NMR assignments 8(2) 379-82 2014年10月  査読有り
    Cytoplasmic dynein is a motor protein that walks toward the minus end of microtubules (MTs) by utilizing the energy of ATP hydrolysis. The heavy chain of cytoplasmic dynein contains the microtubule-binding domain (MTBD). Switching of MTBD between high and low affinity states for MTs is crucial for processive movement of cytoplasmic dynein. Previous biochemical studies demonstrated that the affinity of MTBD is regulated by the AAA+ family ATPase domain, which is separated by 15 nm long coiled-coil helix. In order to elucidate the structural basis of the affinity switching mechanism of MTBD, we designed two MTBD constructs, termed MTBD-High and MTBD-Low, which are locked in high and low affinity state for MTs, respectively, by introducing a disulfide bond between the coiled-coil helix. Here, we established the backbone and side-chain assignments of MTBD-High and MTBD-Low for further structural analyses.
  • Takumi Ueda, Koh Takeuchi, Noritaka Nishida, Pavlos Stampoulis, Yutaka Kofuku, Masanori Osawa, Ichio Shimada
    Quarterly reviews of biophysics 47(2) 143-87 2014年5月  査読有り
    Structural analyses of protein-protein interactions are required to reveal their functional mechanisms, and accurate protein-protein complex models, based on experimental results, are the starting points for drug development. In addition, structural information about proteins under physiologically relevant conditions is crucially important for understanding biological events. However, for proteins such as those embedded in lipid bilayers and transiently complexed with their effectors under physiological conditions, structural analyses by conventional methods are generally difficult, due to their large molecular weights and inhomogeneity. We have developed the cross-saturation (CS) method, which is an nuclear magnetic resonance measurement technique for the precise identification of the interfaces of protein-protein complexes. In addition, we have developed an extended version of the CS method, termed transferred cross-saturation (TCS), which enables the identification of the residues of protein ligands in close proximity to huge (>150 kDa) and heterogeneous complexes under fast exchange conditions (>0.1 s(-1)). Here, we discuss the outline, basic theory, and practical considerations of the CS and TCS methods. In addition, we will review the recent progress in the construction of models of protein-protein complexes, based on CS and TCS experiments, and applications of TCS to in situ analyses of biologically and medically important proteins in physiologically relevant states.
  • Noritaka Nishida, Masanori Osawa, Koh Takeuchi, Shunsuke Imai, Pavlos Stampoulis, Yutaka Kofuku, Takumi Ueda, Ichio Shimada
    Journal of magnetic resonance (San Diego, Calif. : 1997) 241 86-96 2014年4月  査読有り
    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules.
  • Noritaka Nishida, Maho Yagi-Utsumi, Fumihiro Motojima, Masasuke Yoshida, Ichio Shimada, Koichi Kato
    Journal of bioscience and bioengineering 116(2) 160-4 2013年8月  査読有り
    GroEL-protein interactions were characterized by stable isotope-assisted nuclear magnetic resonance (NMR) spectroscopy using chemically denatured bovine rhodanese and an intrinsically disordered protein, α-synuclein, as model ligands. NMR data indicated that proteins tethered to GroEL remain largely unfolded and highly mobile, enabling identification of the interaction hot spots displayed on intrinsically disordered proteins.
  • Satoshi Kubo, Noritaka Nishida, Yuko Udagawa, Osamu Takarada, Shinji Ogino, Ichio Shimada
    Angewandte Chemie (International ed. in English) 52(4) 1208-11 2013年1月21日  査読有り
  • Masanori Osawa, Koh Takeuchi, Takumi Ueda, Noritaka Nishida, Ichio Shimada
    Current opinion in structural biology 22(5) 660-9 2012年10月  査読有り
    Solution NMR spectroscopy can analyze the dynamics of proteins on a wide range of timescales, from picoseconds to even days, in a site-specific manner, and thus its results are complementary to the detailed but largely static structural information obtained by X-ray crystallography. We review recent progresses in a variety of NMR techniques, including relaxation dispersion and paramagnetic relaxation enhancement (PRE), that permit the observation of the low-populated states, which had been 'invisible' with other techniques. In addition, we review how NMR spectroscopy can be used to elucidate functionally relevant protein dynamics.
  • Noritaka Nishida, Ichio Shimada
    Methods in molecular biology (Clifton, N.J.) 757 129-37 2012年  査読有り
    Specific interactions between proteins are a fundamental process underlying the various biological events, such as cell-cell contacts, signal transduction, and gene expression. Therefore, the structural investigations of protein-protein interactions provide useful information for understanding these events. We describe an NMR method, termed the cross-saturation (CS) method, to determine the binding sites of protein complexes more precisely than conventional NMR methods. The CS method can determine the binding sites of a protein complex that undergoes fast exchange between the free and the bound states, regardless of the molecular size of the complex.
  • Noritaka Nishida, Ichio Shimada
    Seikagaku. The Journal of Japanese Biochemical Society 83(10) 893-901 2011年10月  査読有り
  • Yan-Feng Zhou, Edward T Eng, Noritaka Nishida, Chafen Lu, Thomas Walz, Timothy A Springer
    The EMBO journal 30(19) 4098-111 2011年8月19日  査読有り
    At the acidic pH of the trans-Golgi and Weibel-Palade bodies (WPBs), but not at the alkaline pH of secretion, the C-terminal ∼1350 residues of von Willebrand factor (VWF) zip up into an elongated, dimeric bouquet. Six small domains visualized here for the first time between the D4 and cystine-knot domains form a stem. The A2, A3, and D4 domains form a raceme with three pairs of opposed, large, flower-like domains. N-terminal VWF domains mediate helical tubule formation in WPBs and template N-terminal disulphide linkage between VWF dimers, to form ultralong VWF concatamers. The dimensions we measure in VWF at pH 6.2 and 7.4, and the distance between tubules in nascent WPB, suggest that dimeric bouquets are essential for correct VWF dimer incorporation into growing tubules and to prevent crosslinking between neighbouring tubules. Further insights into the structure of the domains and flexible segments in VWF provide an overall view of VWF structure important for understanding both the biogenesis of ultralong concatamers at acidic pH and flow-regulated changes in concatamer conformation in plasma at alkaline pH that trigger hemostasis.
  • Li-Zhi Mi, Chafen Lu, Zongli Li, Noritaka Nishida, Thomas Walz, Timothy A Springer
    Nature structural & molecular biology 18(9) 984-9 2011年8月7日  査読有り
    To our knowledge, no structural study to date has characterized, in an intact receptor, the coupling of conformational change in extracellular domains through a single-pass transmembrane domain to conformational change in cytoplasmic domains. Here we examine such coupling, and its unexpected complexity, using nearly full-length epidermal growth factor receptor (EGFR) and negative-stain EM. The liganded, dimeric EGFR ectodomain can couple both to putatively active, asymmetrically associated kinase dimers and to putatively inactive, symmetrically associated kinase dimers and monomers. Inhibitors that stabilize the active or inactive conformation of the kinase active site, as well as mutations in the kinase dimer interface and a juxtamembrane phosphorylation site, shift the equilibrium among the three kinase association states. This coupling of one conformation of an activated receptor ectodomain to multiple kinase-domain arrangements reveals previously unanticipated complexity in transmembrane signaling and facilitates regulation of receptor function in the juxtamembrane and cytoplasmic environments.
  • Ryo Umemoto, Noritaka Nishida, Shinji Ogino, Ichio Shimada
    Journal of biomolecular NMR 48(1) 59-64 2010年9月  査読有り
  • Xing Chen, Can Xie, Noritaka Nishida, Zongli Li, Thomas Walz, Timothy A Springer
    Proceedings of the National Academy of Sciences of the United States of America 107(33) 14727-32 2010年8月17日  査読有り
    Negative stain electron microscopy (EM) and adhesion assays show that alpha(X)beta(2) integrin activation requires headpiece opening as well as extension. An extension-inducing Fab to the beta(2) leg, in combination with representative activating and inhibitory Fabs, were examined for effect on the equilibrium between the open and closed headpiece conformations. The two activating Fabs stabilized the open headpiece conformation. Conversely, two different inhibitory Fabs stabilized the closed headpiece conformation. Adhesion assays revealed that alpha(X)beta(2) in the extended-open headpiece conformation had high affinity for ligand, whereas both the bent conformation and the extended-closed headpiece conformation represented the low affinity state. Intermediate integrin affinity appears to result not from a single conformational state, but from a mixture of equilibrating conformational states.
  • Shinji Ogino, Noritaka Nishida, Ryo Umemoto, Miho Suzuki, Mitsuhiro Takeda, Hiroaki Terasawa, Joji Kitayama, Masanori Matsumoto, Haruko Hayasaka, Masayuki Miyasaka, Ichio Shimada
    Structure (London, England : 1993) 18(5) 649-56 2010年5月12日  査読有り
    The hyaluronan (HA) receptor CD44 mediates cell adhesion in leukocyte trafficking and tumor metastasis. Our previous nuclear magnetic resonance (NMR) studies revealed that the CD44 hyaluronan-binding domain (HABD) alters its conformation upon HA binding, from the ordered (O) to the partially disordered (PD) conformation. Here, we demonstrate that the HABD undergoes an equilibrium between the O and PD conformations, in either the presence or absence of HA, which explains the seemingly contradictory X-ray and NMR structures of the HA-bound HABD. An HABD mutant that exclusively adopts the PD conformation displayed a higher HA affinity than the wild-type. Rolling of the cells expressing the mutant CD44 was less efficient than those expressing the wild-type, due to the decreased tether frequency and the slow cellular off rate. Considering that the mutant CD44, devoid of the low-affinity state, exhibited impaired rolling, we conclude that the coexistence of the high- and low-affinity states of the HABD is essential for the CD44-mediated rolling.
  • Can Xie, Jianghai Zhu, Xing Chen, Lizhi Mi, Noritaka Nishida, Timothy A Springer
    The EMBO journal 29(3) 666-79 2010年2月3日  査読有り
    We report the structure of an integrin with an alphaI domain, alpha(X)beta(2), the complement receptor type 4. It was earlier expected that a fixed orientation between the alphaI domain and the beta-propeller domain in which it is inserted would be required for allosteric signal transmission. However, the alphaI domain is highly flexible, enabling two betaI domain conformational states to couple to three alphaI domain states, and greater accessibility for ligand recognition. Although alpha(X)beta(2) is bent similarly to integrins that lack alphaI domains, the terminal domains of the alpha- and beta-legs, calf-2 and beta-tail, are oriented differently than in alphaI-less integrins. Linkers extending to the transmembrane domains are unstructured. Previous mutations in the beta(2)-tail domain support the importance of extension, rather than a deadbolt, in integrin activation. The locations of further activating mutations and antibody epitopes show the critical role of extension, and conversion from the closed to the open headpiece conformation, in integrin activation. Differences among 10 molecules in crystal lattices provide unprecedented information on interdomain flexibility important for modelling integrin extension and activation.
  • Shinji Ogino, Satoshi Kubo, Ryo Umemoto, Shuxian Huang, Noritaka Nishida, Ichio Shimada
    Journal of the American Chemical Society 131(31) 10834-5 2009年8月12日  査読有り
    We have developed a new in-cell NMR method that is applicable to any type of cell and does not require target protein modification or specialized equipment. The stable-isotope-labeled target protein, thymosin beta4 (Tbeta4), was delivered to 293F cells, which were permeabilized by a pore-forming toxin, streptolysin O, and resealed by Ca(2+) after Tbeta4 uptake. As a result, we successfully observed (1)H-(15)N HSQC signals originating from the Tbeta4, including those from the N-terminal acetylation, which had occurred inside the cell as a post-translational modification.
  • Ichio Shimada, Takumi Ueda, Masahiko Matsumoto, Masayoshi Sakakura, Masanori Osawa, Koh Takeuchi, Noritaka Nishida, Hideo Takahashi
    PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 54(2) 123-140 2009年2月  査読有り
  • Jianghai Zhu, Bing-Hao Luo, Tsan Xiao, Chengzhong Zhang, Noritaka Nishida, Timothy A Springer
    Molecular cell 32(6) 849-61 2008年12月26日  査読有り
    The complete ectodomain of integrin alpha(IIb)beta(3) reveals a bent, closed, low-affinity conformation, the beta knee, and a mechanism for linking cytoskeleton attachment to high affinity for ligand. Ca and Mg ions in the recognition site, including the synergistic metal ion binding site (SyMBS), are loaded prior to ligand binding. Electrophilicity of the ligand-binding Mg ion is increased in the open conformation. The beta(3) knee passes between the beta(3)-PSI and alpha(IIb)-knob to bury the lower beta leg in a cleft, from which it is released for extension. Different integrin molecules in crystals and EM reveal breathing that appears on pathway to extension. Tensile force applied to the extended ligand-receptor complex stabilizes the closed, low-affinity conformation. By contrast, an additional lateral force applied to the beta subunit to mimic attachment to moving actin filaments stabilizes the open, high-affinity conformation. This mechanism propagates allostery over long distances and couples cytoskeleton attachment of integrins to their high-affinity state.
  • Li-Zhi Mi, Michael J Grey, Noritaka Nishida, Thomas Walz, Chafen Lu, Timothy A Springer
    Biochemistry 47(39) 10314-23 2008年9月30日  査読有り
    Cellular signaling mediated by the epidermal growth factor receptor (EGFR or ErbB) family of receptor tyrosine kinases plays an important role in regulating normal and oncogenic cellular physiology. While structures of isolated EGFR extracellular domains and intracellular protein tyrosine kinase domains have suggested mechanisms for growth factor-mediated receptor dimerization and allosteric kinase domain activation, understanding how the transmembrane and juxtamembrane domains contribute to transmembrane signaling requires structural studies on intact receptor molecules. In this report, recombinant EGFR constructs containing the extracellular, transmembrane, juxtamembrane, and kinase domains are overexpressed and purified from human embryonic kidney 293 cell cultures. The oligomerization state, overall structure, and functional stability of the purified EGF-bound receptor are characterized in detergent micelles and phospholipid bilayers. In the presence of EGF, catalytically active EGFR dimers can be isolated by gel filtration in dodecyl maltoside. Visualization of the dimeric species by negative stain electron microscopy and single particle averaging reveals an overall structure of the extracellular domain that is similar to previously published crystal structures and is consistent with the C-termini of domain IV being juxtaposed against one another as they enter the transmembrane domain. Although detergent-soluble preparations of EGFR are stable as dimers in the presence of EGF, they exhibit differential functional stability in Triton X-100 versus dodecyl maltoside. Furthermore, the kinase activity can be significantly stabilized by reconstituting purified EGF-bound EGFR dimers in phospholipid nanodiscs or vesicles, suggesting that the environment around the hydrophobic transmembrane and amphipathic juxtamembrane domains is important for stabilizing the tyrosine kinase activity in vitro.
  • Noritaka Nishida, Ichio Shimada
    Seikagaku. The Journal of Japanese Biochemical Society 80(6) 483-92 2008年6月  査読有り
  • Osamu Ichikawa, Masanori Osawa, Noritaka Nishida, Naoki Goshima, Nobuo Nomura, Ichio Shimada
    The EMBO journal 26(18) 4168-76 2007年9月19日  査読有り
    Discoidin domain receptor (DDR) is a cell-surface receptor tyrosine kinase activated by the binding of its discoidin (DS) domain to fibrillar collagen. Here, we have determined the NMR structure of the DS domain in DDR2 (DDR2-DS domain), and identified the binding site to fibrillar collagen by transferred cross-saturation experiments. The DDR2-DS domain structure adopts a distorted jellyroll fold, consisting of eight beta-strands. The collagen-binding site is formed at the interloop trench, consisting of charged residues surrounded by hydrophobic residues. The surface profile of the collagen-binding site suggests that the DDR2-DS domain recognizes specific sites on fibrillar collagen. This study provides a molecular basis for the collagen-binding mode of the DDR2-DS domain.
  • Noritaka Nishida, Thomas Walz, Timothy A Springer
    Proceedings of the National Academy of Sciences of the United States of America 103(52) 19737-42 2006年12月26日  査読有り
    Complement sensitizes pathogens for phagocytosis and lysis. We use electron microscopy to examine the structural transitions in the activation of the pivotal protein in the complement pathway, C3. In the cleavage product C3b, the position of the thioester domain moves approximately 100 Angstrom, which becomes covalently coupled to antigenic surfaces. In the iC3b fragment, cleavage in an intervening domain creates a long flexible linker between the thioester domain and the macroglobulin domain ring of C3. Studies on two products of nucleophile addition to C3 reveal a structural intermediate in activation, and a final product, in which the anaphylatoxin domain has undergone a remarkable movement through the macroglobulin ring.
  • Noritaka Nishida, Fumihiro Motojima, Mayu Idota, Hiroshi Fujikawa, Masasuke Yoshida, Ichio Shimada, Koichi Kato
    Journal of biochemistry 140(4) 591-8 2006年10月  査読有り
    Bacterial chaperonin GroEL with a molecular mass of 800 kDa was studied by (13)C NMR spectroscopy. Carbonyl carbons of GroEL were labeled with (13)C in an amino acid specific manner in order to reduce the number of signals to be observed in the spectrum. Combination of selective labeling and site-directed mutagenesis enabled us to establish the sequence specific assignment of the (13)C resonances from GroEL. ADP-binding induced a chemical shift change of Tyr478 in the equatorial domain and His401 in the intermediate domain, but little of Tyr203 in the apical domain. Upon complex formation with co-chaperonin GroES in the presence of ADP, Tyr478 exhibits two peaks that would originate from the cis and trans rings of the asymmetric GroEL-GroES complex. Comparison between the line width of the GroEL resonances and those from GroES in complex with GroEL revealed broadening disproportionate to the size of GroEL, implying the existence of conformational fluctuations which may be pertinent to the chaperone activity. Based on these results, we concluded that (13)C NMR observation in combination with selective labeling and site-directed mutagenesis can be utilized for probing the conformational change and dynamics of the extremely large molecules that are inaccessible with current NMR methods.
  • Noritaka Nishida, Can Xie, Motomu Shimaoka, Yifan Cheng, Thomas Walz, Timothy A Springer
    Immunity 25(4) 583-94 2006年10月  査読有り
    We used negative stain electron microscopy (EM) to examine the conformational changes in the ectodomains required for activation of the leukocyte integrins alpha(X)beta(2) and alpha(L)beta(2). They transitioned between a bent conformation and two extended conformations in which the headpiece was in either a closed or an open state. Extended integrins exhibited marked flexibility at the alpha subunit genu and between integrin epidermal growth factor-like (I-EGF) domains 1 and 2. A clasp to mimic juxtamembrane association between the integrin alpha and beta subunits stabilized the bent conformation strongly for alpha(X)beta(2) and less so for alpha(L)beta(2). A small molecule allosteric antagonist induced the extended, open headpiece conformation. A Fab known to activate beta(2) integrins on leukocytes induced extension, and a Fab reporter of activation bound only after extension had been induced. The results establish an intimate relationship between extension of beta(2) integrins and their activation in immune responses and leukocyte trafficking.
  • Noritaka Nishida, Hiromi Sumikawa, Masayoshi Sakakura, Nobuhisa Shimba, Hideo Takahashi, Hiroaki Terasawa, Ei-Ichiro Suzuki, Ichio Shimada
    Nature structural biology 10(1) 53-8 2003年1月  査読有り
    The nature of the supramolecular complex between fibrillar collagen and collagen-binding proteins (CBPs) has hindered detailed X-ray and NMR analyses of the ligand-recognition mechanism at atomic resolution because of the lack of appropriate approaches for studying large heterogeneous supramolecular complexes. Recently, we proposed an NMR method, termed transferred cross-saturation (TCS), that enables the rigorous identification of contact residues in a huge protein complex. Here we used TCS to study the supramolecular complex between the A3 domain of von Willebrand factor and fibrillar collagen, which allowed the successful determination of the ligand-binding site of the A3 domain. The binding site of the A3 domain was located at its hydrophobic 'front' surface and was completely different from that of the I domain from the a2 subunit of integrin (alpha2-I domain), which was reported to be the hydrophilic 'top' surface of alpha2-I, although the A3 domain and the alpha2-I domain share a similar fold and possess the identical function of collagen binding.
  • Noritaka Nishida, Mayumi Miyazawa, Hiromi Sumikawa, Masayoshi Sakakura, Nobuhisa Shimba, Hideo Takahashi, Hiroaki Terasawa, Ei-ichiro Suzuki, Ichio Shimada
    Journal of biomolecular NMR 24(4) 357-8 2002年12月  査読有り

共同研究・競争的資金等の研究課題

 11