Analytical Chemistry Research 5 1-8 2015年9月1日 査読有り筆頭著者責任著者
A reagentless electrochemical biosensor for hydrogen peroxide was fabricated. The sensor carries a monolayer of nanocomplex composed of horseradish peroxidase and Au-nanoparticle, and responds to hydrogen peroxide through the highly efficient direct electron transfer at a mild electrode potential without any soluble mediator. Formation of the nanocomplex was studied with visible spectroscopy and size exclusion chromatography. The sensor performance was analyzed based on a hydrodynamic electrochemical technique and enzyme kinetics. The sensor was applied to fabrication of sensors for glucose and uric acid through further modification of the nanocomplex-carrying electrode with the corresponding hydrogen peroxide-generating oxidases, glucose oxidase and urate oxidase, respectively.
A novel electrochemical biosensor for hydrogen peroxide with high electron transfer efficiency was developed using a nanocomplex composed of horseradish peroxidase and Au-nanoparticle. The nanocomplex was prepared through adsorption of horseradish peroxidase on an Au-nanoparticle. The nanocomplexes were easily coagulated and immobilized on an ITO electrode as a monolayer film by simply casting the nanocomplex dispersion and drying below 10 degrees C. The electrode worked as a hydrogen peroxide biosensor featuring high electron transfer efficiency without any soluble mediator at a mild electrode potential of +0.15V vs. Ag/AgCl.