研究者業績

越谷 重夫

コシタニ シゲオ  (Shigeo Koshitani)

基本情報

所属
千葉大学 先進科学センター 特任教授 (千葉大学理学研究科 名誉教授)
学位
アーベル2一シロー部分群をもつ有限群の主2一プロックについて(1980年7月 筑波大学)

J-GLOBAL ID
200901010238520987
researchmap会員ID
1000010762

外部リンク

論文

 33
  • Shigeo Koshitani, İpek Tuvay
    Journal of Algebra and Its Applications 2025年1月  
  • Shigeo Koshitani, Ipek Tuvay
    Rocky Mountain Journal of Mathematics 2022年1月  査読有り筆頭著者最終著者
  • Shigeo Koshitani, İpek Tuvay
    Proceedings of the Edinburgh Mathematical Society 1-9 2021年5月4日  査読有り筆頭著者最終著者
    <title>Abstract</title> We present a sufficient condition for the <inline-formula> <alternatives> <tex-math>$kG$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline1.png" /> </alternatives> </inline-formula>-Scott module with vertex <inline-formula> <alternatives> <tex-math>$P$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline2.png" /> </alternatives> </inline-formula> to remain indecomposable under the Brauer construction for any subgroup <inline-formula> <alternatives> <tex-math>$Q$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline3.png" /> </alternatives> </inline-formula> of <inline-formula> <alternatives> <tex-math>$P$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline4.png" /> </alternatives> </inline-formula> as <inline-formula> <alternatives> <tex-math>$k[Q\,C_G(Q)]$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline5.png" /> </alternatives> </inline-formula>-module, where <inline-formula> <alternatives> <tex-math>$k$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline6.png" /> </alternatives> </inline-formula> is a field of characteristic <inline-formula> <alternatives> <tex-math>$2$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline7.png" /> </alternatives> </inline-formula>, and <inline-formula> <alternatives> <tex-math>$P$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline8.png" /> </alternatives> </inline-formula> is a semidihedral <inline-formula> <alternatives> <tex-math>$2$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline9.png" /> </alternatives> </inline-formula>-subgroup of a finite group <inline-formula> <alternatives> <tex-math>$G$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline10.png" /> </alternatives> </inline-formula>. This generalizes results for the cases where <inline-formula> <alternatives> <tex-math>$P$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline11.png" /> </alternatives> </inline-formula> is abelian or dihedral. The Brauer indecomposability is defined by R. Kessar, N. Kunugi and N. Mitsuhashi. The motivation of this paper is the fact that the Brauer indecomposability of a <inline-formula> <alternatives> <tex-math>$p$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline12.png" /> </alternatives> </inline-formula>-permutation bimodule (where <inline-formula> <alternatives> <tex-math>$p$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline13.png" /> </alternatives> </inline-formula> is a prime) is one of the key steps in order to obtain a splendid stable equivalence of Morita type by making use of the gluing method due to Broué, Rickard, Linckelmann and Rouquier, that then can possibly be lifted to a splendid derived (splendid Morita) equivalence.
  • Shigeo Koshitani, Caroline Lassueur
    Journal of Algebra 574 375-408 2021年5月  査読有り筆頭著者
  • Shigeo Koshitani, Caroline Lassueur, Benjamin Sambale
    Proceedings of the American Mathematical Society 1-1 2021年4月23日  査読有り筆頭著者最終著者

MISC

 75
  • Koshitani Shigeo
    数理解析研究所講究録 1581 20-22 2008年2月  
  • KOSHITANI S.
    J. Pure Appl. Algebra 212 1438-1456 2008年  
  • 越谷 重夫
    数理解析研究所講究録 1564 58-60 2007年7月  
  • ME Harris, S Koshitani
    JOURNAL OF ALGEBRA 296(1) 96-109 2006年2月  
  • S Koshitani, M Linckelmann
    JOURNAL OF ALGEBRA 285(2) 726-729 2005年3月  
    Broue's abelian defect conjecture [Asterisque 181/182 (1990) 61-92. 6.2] predicts for a p-block of a finite group G with an abelian defect group P a derived equivalence between the block algebra and its Brauer correspondent. By a result of Rickard [J. London Math. Soc. 43 (1991) 37-48], such a derived equivalence would in particular imply a stable equivalence induced by tensoring with a suitable bimodule-and it appears that these stable equivalences in turn tend to be obtained by "gluing" together Morita equivalences at the local levels of the considered blocks see. e.g., [M. Broue, Equivalences of blocks of group algebras, in: V Dlab, L.L. Scott (Eds.). Finite Dimensional Algebras and Related Topics, Kluwer Acad. Publ., 1994, pp. 1-26, 6.3], [M. Linckelmann, On splendid derived and stable equivalences between blocks of finite groups, J. Algebra 242 (2001) 819-843, 3.1] [J. Rickard, Splendid equivalences: derived categories and permutation modules, Proc. London Math. Soc. 72 (1996) 331-358, 4.1], and [R. Rouquier, Block theory via stable and Rickard equivalences, in: M.J. Collins, B.J. Parshall, L.L. Scott (Eds.), Modular Representation Theory of Finite Groups., de Gruyter, Berlin, 2001, pp. 101-146, 5.6, A.4.1]. This note provides a technical indecomposability result which is intended to verify in suitable circumstances the hypotheses that are necessary to apply gluing results as mentioned above. This is used in [S. Koshitani, N. Kunugi, K. Waki, Broue's abelian defect group conjecture for the Held group and the sporadic Suzuki group, J. Algebra 279 (2004)638-666] to show that Broue's abelian defect group conjecture holds for nonprincipal blocks of the simple Held group and the sporadic Suzuki group. (c) 2004 Elsevier Inc. All rights reserved.

講演・口頭発表等

 22

所属学協会

 1

共同研究・競争的資金等の研究課題

 37