研究者業績

越谷 重夫

コシタニ シゲオ  (Shigeo Koshitani)

基本情報

所属
千葉大学 先進科学センター 特任教授 (千葉大学理学研究科 名誉教授)
学位
アーベル2一シロー部分群をもつ有限群の主2一プロックについて(1980年7月 筑波大学)

J-GLOBAL ID
200901010238520987
researchmap会員ID
1000010762

外部リンク

論文

 33
  • Shigeo Koshitani, İpek Tuvay
    Journal of Algebra and Its Applications 2025年1月  
  • Shigeo Koshitani, Ipek Tuvay
    Rocky Mountain Journal of Mathematics 2022年1月  査読有り筆頭著者最終著者
  • Shigeo Koshitani, İpek Tuvay
    Proceedings of the Edinburgh Mathematical Society 1-9 2021年5月4日  査読有り筆頭著者最終著者
    <title>Abstract</title> We present a sufficient condition for the <inline-formula> <alternatives> <tex-math>$kG$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline1.png" /> </alternatives> </inline-formula>-Scott module with vertex <inline-formula> <alternatives> <tex-math>$P$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline2.png" /> </alternatives> </inline-formula> to remain indecomposable under the Brauer construction for any subgroup <inline-formula> <alternatives> <tex-math>$Q$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline3.png" /> </alternatives> </inline-formula> of <inline-formula> <alternatives> <tex-math>$P$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline4.png" /> </alternatives> </inline-formula> as <inline-formula> <alternatives> <tex-math>$k[Q\,C_G(Q)]$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline5.png" /> </alternatives> </inline-formula>-module, where <inline-formula> <alternatives> <tex-math>$k$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline6.png" /> </alternatives> </inline-formula> is a field of characteristic <inline-formula> <alternatives> <tex-math>$2$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline7.png" /> </alternatives> </inline-formula>, and <inline-formula> <alternatives> <tex-math>$P$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline8.png" /> </alternatives> </inline-formula> is a semidihedral <inline-formula> <alternatives> <tex-math>$2$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline9.png" /> </alternatives> </inline-formula>-subgroup of a finite group <inline-formula> <alternatives> <tex-math>$G$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline10.png" /> </alternatives> </inline-formula>. This generalizes results for the cases where <inline-formula> <alternatives> <tex-math>$P$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline11.png" /> </alternatives> </inline-formula> is abelian or dihedral. The Brauer indecomposability is defined by R. Kessar, N. Kunugi and N. Mitsuhashi. The motivation of this paper is the fact that the Brauer indecomposability of a <inline-formula> <alternatives> <tex-math>$p$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline12.png" /> </alternatives> </inline-formula>-permutation bimodule (where <inline-formula> <alternatives> <tex-math>$p$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline13.png" /> </alternatives> </inline-formula> is a prime) is one of the key steps in order to obtain a splendid stable equivalence of Morita type by making use of the gluing method due to Broué, Rickard, Linckelmann and Rouquier, that then can possibly be lifted to a splendid derived (splendid Morita) equivalence.
  • Shigeo Koshitani, Caroline Lassueur
    Journal of Algebra 574 375-408 2021年5月  査読有り筆頭著者
  • Shigeo Koshitani, Caroline Lassueur, Benjamin Sambale
    Proceedings of the American Mathematical Society 1-1 2021年4月23日  査読有り筆頭著者最終著者
  • Shigeo Koshitani, Caroline Lassueur
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry 2021年4月12日  査読有り筆頭著者責任著者
  • Shigeo Koshitani, Taro Sakurai
    Bulletin of the London Mathematical Society 2021年3月22日  査読有り筆頭著者最終著者責任著者
  • Shigeo Koshitani, Naoko Kunugi
    Journal fur die Reine und Angewandte Mathematik 2001(539) 1-27 2020年9月20日  
    In modular representation theory of finite groups, there is a well-known and important conjecture due to M. Broue. He has conjectured that, for a prime p, if a finite group G has an abelian Sylow p-subgroup P, then the principal p-blocks of G and the normalizer NG.P. of P in G would be derived equivalent. It is shown here that, the Broue's conjecture is true for a prime 3 and for the projective special unitary group G . PSU.3 q2. for a power q of a prime satisfying q12 or 5 (mod 9). In this case such a G has elementary abelian Sylow 3-subgroups of order 9.
  • Shigeo Koshitani, Caroline Lassueur
    Journal of Algebra 558 523-533 2020年9月  査読有り招待有り筆頭著者最終著者責任著者
  • Shigeo Koshitani, Caroline Lassueur
    Mathematische Zeitschrift 294(1-2) 639-666 2020年2月  査読有り筆頭著者責任著者
  • Shigeo Koshitani, İpek Tuvay
    Algebras and Representation Theory 22(6) 1387-1397 2019年12月  査読有り筆頭著者最終著者責任著者
  • SHIGEO KOSHITANI, CAROLINE LASSUEUR
    Nagoya Mathematical Journal 235 58-85 2019年9月  査読有り筆頭著者最終著者責任著者
    Given an odd prime <inline-formula> <alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S0027763017000459_inline1" xlink:type="simple" /><tex-math>$p$</tex-math></alternatives> </inline-formula>, we investigate the position of simple modules in the stable Auslander–Reiten quiver of the principal block of a finite group with noncyclic abelian Sylow <inline-formula> <alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S0027763017000459_inline2" xlink:type="simple" /><tex-math>$p$</tex-math></alternatives> </inline-formula>-subgroups. In particular, we prove a reduction to finite simple groups. In the case that the characteristic is <inline-formula> <alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S0027763017000459_inline3" xlink:type="simple" /><tex-math>$3$</tex-math></alternatives> </inline-formula>, we prove that simple modules in the principal block all lie at the end of their components.
  • Shigeo Koshitani, Taro Sakurai
    Archiv der Mathematik 113(1) 1-10 2019年7月  査読有り筆頭著者最終著者
  • Shigeo Koshitani
    Journal of Discrete Mathematical Sciences and Cryptography 21(7-8) 1515-1517 2018年11月17日  査読有り筆頭著者最終著者責任著者
  • Shigeo Koshitani, Jürgen Müller
    Algebra Colloquium 24(03) 439-452 2017年9月  査読有り筆頭著者最終著者責任著者
    We give a lower bound of the Loewy length of the projective cover of the trivial module for the group algebra kG of a finite group G of Lie type defined over a finite field of odd characteristic p, where k is an arbitrary field of characteristic p. The proof uses Auslander-Reiten theory.
  • Shigeo Koshitani, Britta Späth
    Archiv der Mathematik 106(2) 107-116 2016年2月  査読有り筆頭著者最終著者責任著者
  • Shigeo Koshitani, Britta Späth
    Journal of Group Theory 19(5) 2016年1月1日  査読有り筆頭著者最終著者責任著者
    <title>Abstract</title>We verify the inductive Blockwise Alperin Weight (BAW) and the inductive Alperin–McKay (AM) conditions introduced by the second author, for
  • Shigeo Koshitani, Caroline Lassueur
    Journal of Group Theory 19(4) 2016年1月1日  査読有り筆頭著者最終著者責任著者
    <title>Abstract</title>We provide a description of the torsion subgroup
  • Radha Kessar, Shigeo Koshitani, Markus Linckelmann
    Journal of Algebra 442 423-437 2015年11月  査読有り最終著者責任著者
  • Radha Kessar, Shigeo Koshitani, Markus Linckelmann
    The Quarterly Journal of Mathematics 66(3) 895-903 2015年9月  査読有り最終著者責任著者
  • Shigeo Koshitani, Caroline Lassueur
    Manuscripta Mathematica 148(1-2) 265-282 2015年9月  査読有り筆頭著者最終著者責任著者
  • Shigeo Koshitani, Britta Späth
    Proceedings of the American Mathematical Society 143(9) 3687-3702 2015年5月20日  査読有り筆頭著者最終著者責任著者
  • Shigeo Koshitani
    Journal of Algebra 426 259-272 2015年3月  査読有り筆頭著者最終著者責任著者
  • Shigeo Koshitani, Jürgen Müller, Felix Noeske
    Journal of Pure and Applied Algebra 219(1) 142-160 2015年1月  査読有り筆頭著者最終著者責任著者
  • Shigeo Koshitani
    Communications in Algebra 42(10) 4308-4321 2014年10月3日  査読有り筆頭著者最終著者責任著者
  • SHIGEO KOSHITANI, BURKHARD KÜLSHAMMER, BENJAMIN SAMBALE
    Mathematical Proceedings of the Cambridge Philosophical Society 156(3) 555-570 2014年5月  査読有り筆頭著者最終著者責任著者
    <title>Abstract</title>We give a lower bound on the Loewy length of a <italic>p</italic>-block of a finite group in terms of its defect. We then discuss blocks with small Loewy length. Since blocks with Loewy length at most 3 are known, we focus on blocks of Loewy length 4 and provide a relatively short list of possible defect groups. It turns out that <italic>p</italic>-solvable groups can only admit blocks of Loewy length 4 if <italic>p</italic>=2. However, we find (principal) blocks of simple groups with Loewy length 4 and defect 1 for all <italic>p</italic> ≡ 1 (mod 3). We also consider sporadic, symmetric and simple groups of Lie type in defining characteristic. Finally, we give stronger conditions on the Loewy length of a block with cyclic defect group in terms of its Brauer tree.
  • Shigeo Koshitani, Jürgen Müller, Felix Noeske
    Journal of Algebra 398 434-447 2014年1月  査読有り筆頭著者最終著者責任著者
  • Radha Kessar, Shigeo Koshitani, Markus Linckelmann
    Journal für die reine und angewandte Mathematik (Crelles Journal) 2012(671) 2012年1月  査読有り最終著者
  • Shigeo Koshitani, Jürgen Müller, Felix Noeske
    Journal of Algebra 348(1) 354-380 2011年12月  査読有り筆頭著者最終著者責任著者
  • Shigeo Koshitani, Yutaka Yoshii
    JOURNAL OF ALGEBRA 324(8) 1985-1993 2010年10月  査読有り
    Let A be the principal 3-block of a finite group G with an abelian Sylow 3-subgroup P. Let C(A) be the Cartan matrix of A. and we denote by rho(C(A)) the unique largest eigenvalue of C(A). The value rho(C(A)) is called the Frobenius-Perron eigenvalue of C(A). We shall prove that rho(C(A)) is a rational number if and only if A and the principal 3-block of N(G)(P) are Morita equivalent. This generalizes earlier Wada&apos;s theorem in 2007, where he proves it only for the case that the order of P is nine, while we prove it for the case that P is an arbitrary finite abelian 3-group. The result presented here uses the classification of finite simple groups. (C) 2010 Elsevier Inc. All rights reserved.
  • Shigeo Koshitani, Juergen Mueller
    JOURNAL OF ALGEBRA 324(3) 394-429 2010年8月  査読有り
    In representation theory of finite groups, there is a well-known and important conjecture due to M. Broue. He conjectures that, for any prime p. if a p-block A of a finite group G has an abelian defect group P. then A and its Brauer corresponding block B of the normaliser N(G)(P) of P in G are derived equivalent (Rickard equivalent). This conjecture is called Broue's abelian defect group conjecture. We prove in this paper that Broue's abelian defect group conjecture is true for a non-principal 3-block A with an elementary abelian defect group P of order 9 of the Harada-Norton simple group HN. It then turns out that Broue's abelian defect group conjecture holds for all primes p and for all p-blocks of the Harada-Norton simple group HN. (C) 2010 Elsevier Inc. All rights reserved.
  • Shigeo Koshitani, Naoko Kunugi
    Mathematische Zeitschrift 265(1) 161-172 2010年5月  査読有り
    We shall present a method to get trivial source modules easily just by looking at values of ordinary characters at non-identity p-elements in finite groups instead of doing huge calculation. The method is only for a case where defect groups are cyclic. Nevertheless, it works well at least when we want to prove Broué's abelian defect group conjecture for blocks which have elementary abelian defect groups of order p2. © Springer-Verlag 2009.
  • Miles Holloway, Shigeo Koshitani, Naoko Kunugi
    Archiv der Mathematik 94(2) 101-116 2010年2月  査読有り
    In representation theory of finite groups, one of the most important and interesting problems is that, for a p-block A of a finite group G where p is a prime, the numbers k(A) and ℓ(A) of irreducible ordinary and Brauer characters, respectively, of G in A are p-locally determined. We calculate k(A) and ℓ(A) for the cases where A is a full defect p-block of G, namely, a defect group P of A is a Sylow p-subgroup of G and P is a nonabelian metacyclic p-group Mn+1(p) of order pn+1 and exponent pn for n ≥ 2, and where A is not necessarily a full defect p-block but its defect group P = Mn+1(p) is normal in G. The proof is independent of the classification of finite simple groups. © 2010 Birkhäuser Verlag Basel/Switzerland.

MISC

 75
  • Koshitani Shigeo
    数理解析研究所講究録 1581 20-22 2008年2月  
  • KOSHITANI S.
    J. Pure Appl. Algebra 212 1438-1456 2008年  
  • 越谷 重夫
    数理解析研究所講究録 1564 58-60 2007年7月  
  • ME Harris, S Koshitani
    JOURNAL OF ALGEBRA 296(1) 96-109 2006年2月  
  • S Koshitani, M Linckelmann
    JOURNAL OF ALGEBRA 285(2) 726-729 2005年3月  
    Broue's abelian defect conjecture [Asterisque 181/182 (1990) 61-92. 6.2] predicts for a p-block of a finite group G with an abelian defect group P a derived equivalence between the block algebra and its Brauer correspondent. By a result of Rickard [J. London Math. Soc. 43 (1991) 37-48], such a derived equivalence would in particular imply a stable equivalence induced by tensoring with a suitable bimodule-and it appears that these stable equivalences in turn tend to be obtained by "gluing" together Morita equivalences at the local levels of the considered blocks see. e.g., [M. Broue, Equivalences of blocks of group algebras, in: V Dlab, L.L. Scott (Eds.). Finite Dimensional Algebras and Related Topics, Kluwer Acad. Publ., 1994, pp. 1-26, 6.3], [M. Linckelmann, On splendid derived and stable equivalences between blocks of finite groups, J. Algebra 242 (2001) 819-843, 3.1] [J. Rickard, Splendid equivalences: derived categories and permutation modules, Proc. London Math. Soc. 72 (1996) 331-358, 4.1], and [R. Rouquier, Block theory via stable and Rickard equivalences, in: M.J. Collins, B.J. Parshall, L.L. Scott (Eds.), Modular Representation Theory of Finite Groups., de Gruyter, Berlin, 2001, pp. 101-146, 5.6, A.4.1]. This note provides a technical indecomposability result which is intended to verify in suitable circumstances the hypotheses that are necessary to apply gluing results as mentioned above. This is used in [S. Koshitani, N. Kunugi, K. Waki, Broue's abelian defect group conjecture for the Held group and the sporadic Suzuki group, J. Algebra 279 (2004)638-666] to show that Broue's abelian defect group conjecture holds for nonprincipal blocks of the simple Held group and the sporadic Suzuki group. (c) 2004 Elsevier Inc. All rights reserved.

講演・口頭発表等

 22

所属学協会

 1

共同研究・競争的資金等の研究課題

 37