研究者業績

鈴木 智

スズキ サトシ  (Satoshi Suzuki)

基本情報

所属
千葉大学 大学院工学研究院 准教授
学位
博士(工学)(2008年3月 千葉大学)

研究者番号
90571274
ORCID ID
 https://orcid.org/0000-0001-5343-4660
J-GLOBAL ID
202101014209760708
researchmap会員ID
R000022984

主要な研究キーワード

 3

受賞

 1

主要な論文

 51
  • Abner Jr. Asignacion, Satoshi Suzuki
    IEEE Access 2024年9月  査読有り責任著者
  • Qi Wang, WANG WEI, Satoshi Suzuki
    Aerospace Science and Technology 2024年6月  査読有り責任著者
  • Takumi Wakabayashi, Yukimasa Suzuki, Satoshi Suzuki
    Robotics and Autonomous Systems 160 104320-104320 2023年2月  査読有り責任著者
    To ensure the safety of autonomous Multi-rotor UAVs flying in urban airspace, they should be capable of avoiding collisions with unpredictable dynamic obstacles, such as birds. UAVs must consider both relative position and relative velocity to avoid moving obstacles. Model predictive control (MPC) can consider the multiple collision avoidance constraints in a constrained optimisation framework. This study proposes a chance-constraints based on obstacle velocity (CCOV) method, which can be combined with previous positional chance constraint methods to account for uncertainty in both position and velocity. This effectively prevents collision with high-velocity obstacles, even in a noisy environment. The proposed method has been performed on a numerical simulation built in MATLAB.

MISC

 102

書籍等出版物

 5

講演・口頭発表等

 87
  • 徳元 颯人, 鈴木 智, 市川 智康, 栗原 寛典, 隅田 和哉
    ロボティクス・メカトロニクス講演会講演概要集 2022年 一般社団法人 日本機械学会
  • 松井 馨, 鈴木 智
    ロボティクス・メカトロニクス講演会講演概要集 2021年 一般社団法人 日本機械学会
  • 浜田 智, 鈴木 智, 市川 智康, 栗原 寛典, 隅田 和哉
    ロボティクス・メカトロニクス講演会講演概要集 2021年 一般社団法人 日本機械学会
  • 中橋和那, 鈴木智
    日本ロボット学会学術講演会予稿集(CD-ROM) 2021年
  • Takumi Wakabayashi, Yuma Nunoya, Satoshi Suzuki
    International Conference on Control, Automation and Systems 2021年
    Recently, in order to carry out tasks efficiently such as infrastructure inspection and goods transportation, operations using multi-rotor Unmanned Aerial Vehicles (UAVs) in formation flight are often considered. One of the main issues in motion planning among multiple UAVs is collision avoidance. Model Predictive Control (MPC) is characterized by its ability to consider collision avoidance in the framework of constrained optimization. For this reason, there have been many studies on collision avoidance using MPC, but few studies take into account the uncertainty that occurs in real environments. On the other hand, Chance constrained MPC (CCMPC) is considered to be more robust in collision avoidance due to the consideration of uncertainty. However, the structure of the collision probability constraint equation to be introduced into the evaluation function of MPC has not been sufficiently studied. In this study, the structure of equations for incorporating probability constraints into the evaluation function is examined. Moreover, by quantitatively comparing the equations with the same structure with deterministic constraints introduced into the evaluation function, the difference in collision avoidance is clarified.

共同研究・競争的資金等の研究課題

 8