Masahiro Momoi, Hitoshi Irie, Miho Sekiguchi, Teruyuki Nakajima, Hideaki Takenaka, Kazuhiko Miura, Kazuma Aoki
Progress in Earth and Planetary Science 9(1) 2022年1月 査読有り
<title>Abstract</title>We developed lookup tables for the correlated <italic>k</italic>-distribution (CKD) method in the 940 nm water vapor absorption region (WV-CKD), with the aim of rapid and accurate computation of narrow-band radiation around 940 nm (10,000–10,900 <inline-formula><alternatives><tex-math>$${\mathrm{cm } }^{-1}$$</tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msup>
<mml:mrow>
<mml:mi>cm</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mo>-</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:msup>
</mml:math></alternatives></inline-formula>) for ground-based angular-scanning radiometer data analysis. Tables were constructed at three spectral resolutions (2, 5, and 10 <inline-formula><alternatives><tex-math>$${\mathrm{cm } }^{-1}$$</tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msup>
<mml:mrow>
<mml:mi>cm</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mo>-</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:msup>
</mml:math></alternatives></inline-formula>) with quadrature values (point and weight) and numbers optimized using simulated sky radiances at ground level, which had accuracies of ≤ 0.5% for sub-bands of <inline-formula><alternatives><tex-math>$$10 {\mathrm{cm } }^{-1}$$</tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mn>10</mml:mn>
<mml:msup>
<mml:mrow>
<mml:mi>cm</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mo>-</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:msup>
</mml:mrow>
</mml:math></alternatives></inline-formula>. Although high-resolution WV-CKD requires numerous quadrature points, the number of executions of the radiative transfer model is reduced to approximately 1/46 of the number used in the line-by-line approach by our WV-CKD with a resolution of 2 <inline-formula><alternatives><tex-math>$${\mathrm{cm } }^{-1}$$</tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msup>
<mml:mrow>
<mml:mi>cm</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mo>-</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:msup>
</mml:math></alternatives></inline-formula>. Furthermore, we confirmed through several simulations that WV-CKD could be used to compute radiances with various vertical profiles. The accuracy of convolved direct solar irradiance and diffuse radiance at a full width at half maximum (FWHM) of 10 nm, computed with the WV-CKD, is < 0.3%. In contrast, the accuracy of convolved normalized radiance, which is the ratio of diffuse radiance to direct solar irradiance, at an FWHM of 10 nm computed with the WV-CKD is < 0.11%. This accuracy is lower than the observational uncertainty of a ground-based angular-scanning radiometer (approximately 0.5%). Finally, we applied the SKYMAP and DSRAD algorithms (Momoi et al. in Atmos Meas Tech 13:2635–2658, 2020. <ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" xlink:href="https://doi.org/10.5194/amt-13-2635-2020">10.5194/amt-13-2635-2020</ext-link>) to SKYNET observations (Chiba, Japan) and compared the results with microwave radiometer values. The precipitable water vapor (PWV) derived with the WV-CKD showed better agreement (correlation coefficient <italic>γ</italic> = 0.995, slope = 1.002) with observations than PWV derived with the previous CKD table (correlation coefficient <italic>γ</italic> = 0.984, slope = 0.926) by Momoi et al. (Momoi et al., Atmos Meas Tech 13:2635–2658, 2020). Through application of the WV-CKD to actual data analysis, we found that an accurate CKD table is essential for estimating PWV from sky-radiometer observations.