研究者業績

中田 敏是

ナカタ トシユキ  (Toshiyuki Nakata)

基本情報

所属
千葉大学 大学院工学研究院 准教授
学位
博士(工学)(千葉大学)

J-GLOBAL ID
201701005487288139
researchmap会員ID
B000277009

論文

 55
  • Wataru Kojima, Kosuke Hidaka, Sakito Koizumi, Yuta Murayama, Toshiyuki Nakata
    Animal Behaviour 218 163-172 2024年12月  査読有り
    The robust exoskeleton of beetles, Coleoptera, is believed to have protective advantages, contributing to their evolutionary success. However, empirical evidence of the defensive capabilities of this exoskeleton remains surprisingly scarce. Here, we demonstrate the critical role of the robust beetle exoskeleton in protecting against avian predation. We found that flower chafers (Scarabaeidae, Cetoniinae) have more robust bodies than other scarab species. Laboratory experiments with naïve Japanese quail, Coturnix japonica, revealed that some individuals of intact Cetoniinae survived attacks without serious injury, whereas all individuals of soft scarab species or elytra-removed Cetoniinae were consumed. The survival rate of intact Cetoniinae increased in complex environments because the combination of their stiffness and elliptical shape made it difficult for quail to handle the prey. Field experiments with wild white-cheeked starlings, Sturnus cineraceus, and Eurasian tree sparrows, Passer montanus, demonstrated that most individuals of Cetoniinae species were ignored, whereas soft species were readily preyed upon. Further, when we presented the starlings with the Cetoniinae species Protaetia orientalis that had artificially softened bodies and altered appearance, the starlings readily preyed upon them. This observation suggests that P. orientalis is not chemically defended. Moreover, wild birds can visually discriminate hard species because of prior experience with the unprofitable prey. These results collectively provide evidence that the robust exoskeleton of beetles protects them from predatory attack.
  • Ryusuke Noda, Masaki Hirose, Teruaki Ikeda, Toshiyuki Nakata, Hao Liu
    Journal of Robotics and Mechatronics 36(5) 1010-1018 2024年10月20日  査読有り責任著者
    In recent years, the application of bio-inspired structures has garnered attention for enhancing the performance of fluid machinery. In this study, we experimentally investigated the effects of introducing a bio-inspired cutout structure to the propellers of drones, aiming to improve thrust efficiency and reduce noise levels. Our results demonstrated reductions in noise levels compared to conventional propellers. Parametric studies revealed that the roundness of the structure significantly influenced both flight efficiency and noise levels, suggesting its importance for replicating the inherent fluid characteristics found in nature. Additionally, optimal parameters for noise reduction, such as the length of the cutout, angle of incision relative to the flow direction, and the distance between the gap were identified. Although no improvements in flight efficiency were observed, most of the models investigated exhibited only around a 5% reduction in efficiency compared to the standard propellers, suggesting practical applicability for scenarios such as nighttime drone operations in urban areas. The noteworthy reduction in sound pressure levels in the mid- to high-frequency range achieved by the bio-inspired propellers in this study holds the potential to address the issue of drone noise pollution and encourage drone operations in urban areas. Moreover, the confirmed decrease in sound pressure at specific frequencies and the suggested controllability hint at the possibility of enhancing sound source localization performance using drones.
  • Tatsuya Yamamoto, Ryusuke Noda, Hao Liu, Toshiyuki Nakata
    Journal of Robotics and Mechatronics 36(5) 1134-1142 2024年10月20日  査読有り最終著者責任著者
    Flying animals such as insects and birds use wing flapping for flight, occasionally pausing wing motion and transitioning into gliding to conserve energy for propulsion and achieve high flying efficiency. In this study, we have investigated the gliding performance of a gliding model based on a flapping-wing robot developed in a previous study, with the aim of developing a highly efficient flying robot that utilizes bio-inspired intermittent flight. Wind tunnel experiments with a gliding model have shown that the attitude of the wings has a strong influence on gliding performance and that a tail is effective in improving gliding performance. The results of this study provide important insights into the development of flying robots that can travel long distances with high efficiency.
  • Toshiyuki Nakata, Daigo Terutsuki, Chihiro Fukui, Tomoya Uchida, Kohei Kanzaki, Taito Koeda, Sakito Koizumi, Yuta Murayama, Ryohei Kanzaki, Hao Liu
    Scientific reports 14(1) 17879-17879 2024年8月2日  査読有り筆頭著者責任著者
    Odours used by insects for foraging and mating are carried by the air. Insects induce airflows around them by flapping their wings, and the distribution of these airflows may strongly influence odour source localisation. The flightless silkworm moth, Bombyx mori, has been a prominent insect model for olfactory research. However, although there have been numerous studies on antenna morphology and its fluid dynamics, neurophysiology, and localisation algorithms, the airflow manipulation of the B. mori by fanning has not been thoroughly investigated. In this study, we performed computational fluid dynamics (CFD) analyses of flapping B. mori to analyse this mechanism in depth. A three-dimensional simulation using reconstructed wing kinematics was used to investigate the effects of B. mori fanning on locomotion and pheromone capture. The fanning of the B. mori was found to generate an aerodynamic force on the scale of its weight through an aerodynamic mechanism similar to that of flying insects. Our simulations further indicate that the B. mori guides particles from its anterior direction within the ~ 60° horizontally by wing fanning. Hence, if it detects pheromones during fanning, the pheromone can be concluded to originate from the direction the head is pointing. The anisotropy in the sampling volume enables the B. mori to orient to the pheromone plume direction. These results provide new insights into insect behaviour and offer design guidelines for robots for odour source localisation.
  • Ryusuke Noda, Kotaro Hoshiba, Izumi Komatsuzaki, Toshiyuki Nakata, Hao Liu
    Drones 8(6) 265-265 2024年6月14日  査読有り責任著者
    With the rapid industrialization utilizing multi-rotor drones in recent years, an increase in urban flights is expected in the near future. This may potentially result in noise pollution due to the operation of drones. This study investigates the near- and far-field acoustic characteristics of low-noise propellers inspired by Gurney flaps. In addition, we examine the impact of these low-noise propellers on the sound source localization performance of drones equipped with a microphone array, which are expected to be used for rescuing people in disasters. Results from in-flight noise measurements indicate significant noise reduction mainly in frequency bands above 1 kHz in both the near- and far-field. An improvement in the success rate of sound source localization with low-noise propellers was also observed. However, the influence of the position of the microphone array with respect to the propellers is more pronounced than that of propeller shape manipulation, suggesting the importance of considering the positional relationships. Computational fluid dynamics analysis of the flow field around the propellers suggests potential mechanisms for noise reduction in the developed low-noise propellers. The results obtained in this study hold potential for contributing to the development of integrated drones aimed at reducing noise and improving sound source localization performance.

MISC

 24

講演・口頭発表等

 47

所属学協会

 1

共同研究・競争的資金等の研究課題

 14