研究者業績

越谷 重夫

コシタニ シゲオ  (Shigeo Koshitani)

基本情報

所属
千葉大学 先進科学センター 特任教授 (千葉大学理学研究科 名誉教授)
学位
アーベル2一シロー部分群をもつ有限群の主2一プロックについて(1980年7月 筑波大学)

J-GLOBAL ID
200901010238520987
researchmap会員ID
1000010762

外部リンク

論文

 33
  • Shigeo Koshitani, İpek Tuvay
    Journal of Algebra and Its Applications 2025年1月  
  • Shigeo Koshitani, Ipek Tuvay
    Rocky Mountain Journal of Mathematics 2022年1月  査読有り筆頭著者最終著者
  • Shigeo Koshitani, İpek Tuvay
    Proceedings of the Edinburgh Mathematical Society 1-9 2021年5月4日  査読有り筆頭著者最終著者
    <title>Abstract</title> We present a sufficient condition for the <inline-formula> <alternatives> <tex-math>$kG$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline1.png" /> </alternatives> </inline-formula>-Scott module with vertex <inline-formula> <alternatives> <tex-math>$P$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline2.png" /> </alternatives> </inline-formula> to remain indecomposable under the Brauer construction for any subgroup <inline-formula> <alternatives> <tex-math>$Q$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline3.png" /> </alternatives> </inline-formula> of <inline-formula> <alternatives> <tex-math>$P$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline4.png" /> </alternatives> </inline-formula> as <inline-formula> <alternatives> <tex-math>$k[Q\,C_G(Q)]$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline5.png" /> </alternatives> </inline-formula>-module, where <inline-formula> <alternatives> <tex-math>$k$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline6.png" /> </alternatives> </inline-formula> is a field of characteristic <inline-formula> <alternatives> <tex-math>$2$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline7.png" /> </alternatives> </inline-formula>, and <inline-formula> <alternatives> <tex-math>$P$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline8.png" /> </alternatives> </inline-formula> is a semidihedral <inline-formula> <alternatives> <tex-math>$2$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline9.png" /> </alternatives> </inline-formula>-subgroup of a finite group <inline-formula> <alternatives> <tex-math>$G$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline10.png" /> </alternatives> </inline-formula>. This generalizes results for the cases where <inline-formula> <alternatives> <tex-math>$P$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline11.png" /> </alternatives> </inline-formula> is abelian or dihedral. The Brauer indecomposability is defined by R. Kessar, N. Kunugi and N. Mitsuhashi. The motivation of this paper is the fact that the Brauer indecomposability of a <inline-formula> <alternatives> <tex-math>$p$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline12.png" /> </alternatives> </inline-formula>-permutation bimodule (where <inline-formula> <alternatives> <tex-math>$p$</tex-math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0013091521000067_inline13.png" /> </alternatives> </inline-formula> is a prime) is one of the key steps in order to obtain a splendid stable equivalence of Morita type by making use of the gluing method due to Broué, Rickard, Linckelmann and Rouquier, that then can possibly be lifted to a splendid derived (splendid Morita) equivalence.
  • Shigeo Koshitani, Caroline Lassueur
    Journal of Algebra 574 375-408 2021年5月  査読有り筆頭著者
  • Shigeo Koshitani, Caroline Lassueur, Benjamin Sambale
    Proceedings of the American Mathematical Society 1-1 2021年4月23日  査読有り筆頭著者最終著者

MISC

 75

講演・口頭発表等

 22

所属学協会

 1

共同研究・競争的資金等の研究課題

 37