研究者業績

中田 敏是

ナカタ トシユキ  (Toshiyuki Nakata)

基本情報

所属
千葉大学 大学院工学研究院 准教授
学位
博士(工学)(千葉大学)

J-GLOBAL ID
201701005487288139
researchmap会員ID
B000277009

論文

 55
  • Hao Liu, Xiaolan Wang, Toshiyuki Nakata, Kazuyuki Yoshida
    2012 ICME International Conference on Complex Medical Engineering, CME 2012 Proceedings 657-662 2012年  査読有り招待有り
    Inspired by novel mechanisms in insect and bird flights, in particular, the clap-and-fling mechanism associated with the aerodynamic force enhancement owing to the wing-wing interaction, we developed a prototype flapping micro air vehicle (fMAV), which is weighted 2.4 - 3.0 g, equipped with a X-type wing and a wingspan of 12 -15 cm. In this study, we carried out an integrated study of flexible wing aerodynamics and passive dynamic flight stability of the MAV by a combination of flexible wing kinematics and force measurements and computational approaches. We designed a high-speed camera filming system to measure the flexible wing kinematics and deformations and constructed the computational wing kinematic model. Together with the force measurements we investigated the wing stiffness effects on the force generation associated with the flexible wing deformation. We further used a biology-inspired, dynamic flight simulator to evaluate the aerodynamic performance of the flexible wing MAV. This simulator, by integrating the modeling of realistic wing-body morphology and realistic flapping-wing and body kinematics, provided an evaluation of the MAV's unsteady aerodynamics in terms of vortex and wake structures and their relationship with aerodynamic force generation. Our results show that the clap-and-fling mechanism is indeed realized by the prototype four-winged MAV and the flexible wing deformation even further enhance its effects. Furthermore, we employed a computational approach to analyze the passive dynamic flight stability of the MAV's forward flight. Results based on a linear theory indicated that the MAV is very likely of dynamical stability even with no active feedback control system. © 2012 IEEE.
  • T. Nakata, H. Liu, Y. Tanaka, N. Nishihashi, X. Wang, A. Sato
    BIOINSPIRATION & BIOMIMETICS 6(4) 2011年12月  査読有り
    MAVs (micro air vehicles) with a maximal dimension of 15 cm and nominal flight speeds of around 10 m s(-1), operate in a Reynolds number regime of 10(5) or lower, in which most natural flyers including insects, bats and birds fly. Furthermore, due to their light weight and low flight speed, the MAVs' flight characteristics are substantially affected by environmental factors such as wind gust. Like natural flyers, the wing structures of MAVs are often flexible and tend to deform during flight. Consequently, the aero/fluid and structural dynamics of these flyers are closely linked to each other, making the entire flight vehicle difficult to analyze. We have recently developed a hummingbird-inspired, flapping flexible wing MAV with a weight of 2.4-3.0 g and a wingspan of 10-12 cm. In this study, we carry out an integrated study of the flexible wing aerodynamics of this flapping MAV by combining an in-house computational fluid dynamic (CFD) method and wind tunnel experiments. A CFD model that has a realistic wing planform and can mimic realistic flexible wing kinematics is established, which provides a quantitative prediction of unsteady aerodynamics of the four-winged MAV in terms of vortex and wake structures and their relationship with aerodynamic force generation. Wind tunnel experiments further confirm the effectiveness of the clap and fling mechanism employed in this bio-inspired MAV as well as the importance of the wing flexibility in designing small flapping-wing MAVs.
  • Masateru Maeda, Toshiyuki Nakata, Hao Liu
    ASME-JSME-KSME 2011 Joint Fluids Engineering Conference, AJK 2011 1(D) 2049-2058 2011年  
    Aiming at establishing an effective computational framework to accurately predict free-flying dynamics and aerodynamics we here present a comprehensive investigation on some issues associated with the modelling of free flight. Free flight modelling/simulation is essential for some types of flights e.g. falling leaves or auto-rotating seeds for plants unsteady manoeuvres such as take-off, turning, or landing for animals. In addition to acquiring the deeper understanding of the flight biomechanics of those natural organisms, revealing the sophisticated aerodynamic force generation mechanisms employed by them may be useful in designing man-made flying-machines such as rotary or flapping micro air vehicles (MAVs). The simulations have been conducted using the coupling of computational fluid dynamics (CFD) and rigid body dynamics, thus achieving the free flight. The flow field is computed with a three-dimensional unsteady incompressible Navier-Stokes solver using pseudo-compressibility and overset gird technique. The aerodynamic forces acting on the flyer are calculated by integrating the forces on the surfaces. Similarly, the aerodynamic torque around the flyer's centre of mass is obtained. The forces and moments are then introduced into a six degrees-of-freedom rigid body dynamics solver which utilises unit quaternions for attitude description in order to avoid singular attitude. Results are presented of a single body model and some insect-like multi-body models with flapping wings, which point to the importance of free-flight modelling in systematic analyses of flying aerodynamics and manoeuvrability. Furthermore, a comprehensive investigation indicates that the framework is capable to predict the aerodynamic performance of free-flying or even free-swimming animals in an intermediate range of Reynolds numbers (&lt 105). Copyright © 2011 by ASME.
  • Hao Liu, Toshiyuki Nakata, Na Gao, Masateru Maeda, Hikaru Aono, Wei Shyy
    ACTA MECHANICA SINICA 26(6) 863-879 2010年12月  査読有り
    Aiming at developing an effective tool to unveil key mechanisms in bio-flight as well as to provide guidelines for bio-inspired micro air vehicles (MAVs) design, we propose a comprehensive computational framework, which integrates aerodynamics, flight dynamics, vehicle stability and maneuverability. This framework consists of (1) a Navier-Stokes unsteady aerodynamic model; (2) a linear finite element model for structural dynamics; (3) a fluid-structure interaction (FSI) model for coupled flexible wing aerodynamics aeroelasticity; (4) a free-flying rigid body dynamic (RBD) model utilizing the Newtonian-Euler equations of 6DoF motion; and (5) flight simulator accounting for realistic wing-body morphology, flapping-wing and body kinematics, and a coupling model accounting for the nonlinear 6DoF flight dynamics and stability of insect flapping flight. Results are presented based on hovering aerodynamics with rigid and flexible wings of hawkmoth and fruitfly. The present approach can support systematic analyses of bio- and bio-inspired flight.
  • NAKATA Toshiyuki, ASANUMA Hiroshi, TANAKA Toshiaki, KOMORI Masashi, HAGA Osamu
    J Adv Sci 18(1/2) 6-9 2006年2月1日  査読有り筆頭著者

MISC

 24
  • Saori Tanaka, Abner Asignacion, Toshiyuki Nakata, Satoshi Suzuki, Hao Liu
    Drones 6(11) 2022年11月  
    The utilization of small unmanned aerial vehicles (SUAVs), commonly known as drones, has increased drastically in various industries in the past decade. Commercial drones face challenges in terms of safety, durability, flight performance, and environmental effects such as the risk of collision and damage. Biomimetics, which is inspired by the sophisticated flying mechanisms in aerial animals, characterized by robustness and intelligence in aerodynamic performance, flight stability, and low environmental impact, may provide feasible solutions and innovativeness to drone design. In this paper, we review the recent advances in biomimetic approaches for drone development. The studies were extracted from several databases and we categorized the challenges by their purposes—namely, flight stability, flight efficiency, collision avoidance, damage mitigation, and grasping during flight. Furthermore, for each category, we summarized the achievements of current biomimetic systems and then identified their limitations. We also discuss future tasks on the research and development associated with biomimetic drones in terms of innovative design, flight control technologies, and biodiversity conservation. This paper can be used to explore new possibilities for developing biomimetic drones in industry and as a reference for necessary policy making.
  • Saori Tanaka, Abner Asignacion, Toshiyuki Nakata, Satoshi Suzuki, Hao Liu
    DRONES 6(11) 2022年11月  
    The utilization of small unmanned aerial vehicles (SUAVs), commonly known as drones, has increased drastically in various industries in the past decade. Commercial drones face challenges in terms of safety, durability, flight performance, and environmental effects such as the risk of collision and damage. Biomimetics, which is inspired by the sophisticated flying mechanisms in aerial animals, characterized by robustness and intelligence in aerodynamic performance, flight stability, and low environmental impact, may provide feasible solutions and innovativeness to drone design. In this paper, we review the recent advances in biomimetic approaches for drone development. The studies were extracted from several databases and we categorized the challenges by their purposes-namely, flight stability, flight efficiency, collision avoidance, damage mitigation, and grasping during flight. Furthermore, for each category, we summarized the achievements of current biomimetic systems and then identified their limitations. We also discuss future tasks on the research and development associated with biomimetic drones in terms of innovative design, flight control technologies, and biodiversity conservation. This paper can be used to explore new possibilities for developing biomimetic drones in industry and as a reference for necessary policy making.
  • Ryusuke Noda, Toshiyuki Nakata 0002, Kei Senda, Hao Liu
    482-486 2021年  
  • 干場功太郎, 野田龍介, 中田敏是, 劉浩, 泉田啓, 中臺一博, 中臺一博, 公文誠, 奥乃博, 奥乃博
    日本ロボット学会学術講演会予稿集(CD-ROM) 38th 2020年  
  • Kenzo Nonami, Kotaro Hoshiba, Kazuhiro Nakadai, Makoto Kumon, Hiroshi G. Okuno, Yasutada Tanabe, Koichi Yonezawa, Hiroshi Tokutake, Satoshi Suzuki, Kohei Yamaguchi, Shigeru Sunada, Takeshi Takaki, Toshiyuki Nakata, Ryusuke Noda, Hao Liu, Satoshi Tadokoro
    Disaster Robotics - Results from the ImPACT Tough Robotics Challenge 128 77-142 2019年1月  査読有り

講演・口頭発表等

 47

所属学協会

 1

共同研究・競争的資金等の研究課題

 14